
Alan Kay

Learning Research @POUgs
Xerox Palo Alto Research Center
P a l o A l t o , Californis, WA

Invited Paper:
Meeting on 20 Years of Compueei- Science
Institute di Elaborazione d&a Pn/ormazione, PBS& ITALY

mprove
Personal Computing. In: Meeting on 20 Years of Computing Science.. Instituto di Elaborazione della Informazione, Pisa, Italy, 1975

Alan Kay Media Center: http://mprove.de/diplom/referencesKay.html

More about the history of GUIs and Hypertext: http://mprove.de/diplom/

-/
DATE 12-JUN-75 10:19:38

I
I

PAGE 2

/’
J’

Invited Paper:

/’
Meeting on 20 Years of Computer Science
Znstituto di Eloborazione della Znformazione, PI&I, ITALY

Personal Computing

by

Alan Kay
Learning Research Croup
Xerox Palo Alto Research Center

Introduction

Imagine having your own self-contained knowledge manipulator in a portable package the size and
shape of an ordinary notebook. How would you use it if it had enough power to outrace your
senses of sight and hearing, enough capacity to store for later retrieval thousands of page-equivalents
of reference materials, poems, letters, recipes, drawings, animations, musical scores, waveforms,
dynamic simulations, and anything else you would like to create, remember, and change?

Several years ago, we crystallized these long-held desires into a design idea for a personal dynamic
medium called the Dynubook. We felt that the hardware power for the Dynabook would be
inevitably available in ten years time, but there was no reason to believe that it would be easily usable
by its millions of potential owners if progress in man-computer communication continued at its present
rate.

In particular, we wanted our range of users to include children from age 5 or 6 and ‘noncomputer
adults’ such as secretaries, librarians, architects, musicians, housewives, doctors, and so on. We felt
strongly that the major design problems of the Dynabook lay in the area of communication
rather than in new hardware architectures.

Since it is very difficult to design such an integrated and comprehensive system ‘Aristotle fashion’
(from one’s hammock); we, with others at PARC, designed and built a number of stand-alone
self-contained ZrLterint Dynabooks in order to have a solid test-bed for our ideas. These machines
are the environment for our experimental communications medium, Smalltalk. Both the
Interim Dynabooks and Smalltalk have been used by children and adults.

The Dynabook Mockup The Interim Dynabook

DATE 12-JUN-75 10:19:38

Design Background

‘The first attempt at designing this kind of higher-level personal n~ etan~ ediunr was the
de:relopment of the FLEX Machine in 1967-69[1,2,31. Much of the hard:rnre and software was
successful from the standpoint of computer scier,ce state-of-the-art research but, a? is so often the
case, lacked sufficient expressive power to be truly useful to a11 ordinary user. At that time started to
appear Papert and Fcurzeig’s[g,lO,i l] pioneering lvork having to do with helping kids learn
how to think by giving them an environment in which thinking is both fun and rewarding.

A Drawing of the FLEX Machine A Turrle Ena.. ,- “$I

Shown On Its Own Display Screen
*c ‘T.L.,,

8-= x-4

c a . 1968[3] &s&-

?‘hey chose a time-shared computer and devised a simple though comprehensive language, called*; __
v:hich combined some of the best features of .JOSS[161 and LISP[18). Using LOGO, the
children (ranging in age from 8- 12 years) learned to control a number of exciting activities: a robot
turtle which can draw, a faster CRT version of the turtle, and a simple music generator.

The LOGO work radiates a comptllirr,u excitement in several directions.

First. the children really can program the turtle and the music box to do serious things. The programs
use symbols to stand for objects, contain loops and recursions, require a fair amount of visualization of
alternate strategies before a tactic is chosen, and involve interactive discovery and removal of ‘bugs’ in
:heir ic?eas. As Papert points out, the children are performing real mathematical acts of a kind,
scope, and level not ever achieved by many college graduates.

Second, the kids love it! The interactivqc nature of the dialogue, the fact that they are in control,
the feeling that they are doing real things rather than playing with toys or working out
‘sc’hool’ problems, the pictorial and auditory nature of their results, all contribute a tremendous sense
cf accomplishment to their experience. Their attention spans are measured in hours rather than
minutes.

After seeing the faces of children suddenly drscovering that they are “doers” acting on the world,
rather than “things” being acted upon, it WCLS clear that the next attempt to design a person&
con?puter should be done with children strongly in mind.

First, having children as users would throw sharply into focus the expressive communication problems
x;hich had caused difficulty with the FLEX Machine. In addition, it might be possible to discover why
the LOGO kids had certain difficulties of their own hnvin g to do with naming and parameters, with
partitioning their problems reasonably, and why they appeared to reach a plateau: they could design
and write certain kinds of constructive programs but never quite got to the point where they could do a
reai system.

Second, children really need more computing and expressive power than most adults are willing to
settle for when using a time-sharing system; the best that time-sharing can offer directly is slow
control of crude wire-frame green-tinted graphics aml (even cruder) square-wave ‘musical’ tones. The
kids, on the other hand, are used to high-bar:dwidth media such as as finger-paints, water colors,
color TV, real musical instruments, and hi-fi records. If the ‘medium is the message’, then the
message cf low bandwidth time-sharing is ‘blah’!

JDATE 12-JUN-75 10:19:38 PAGE 4

Our Approach

At the outset, we decided to admit that the design of a truly useful dynamic medium for everyday use
was a hard but extremely worthwhile problem which would require both many years and several
complete interim hardware/software systems to be designed, built, and tested. Approach:

1. Conceptualize a “Holy Grail” version of what the eventual Dynabook should be like in the future,

This image will provide a rallying point and goal which will remind us of what we are trying to do
while the sometimes grubby spadework of producing intermediate systems is in progress.

An extrapolation (and compression) of the FLEX hIachine[4].

2. Do the research in human factors, psychology of perception, physics, and language design which is
prerequisite to any serious attempt at an interim system.

Very few displays have been designed using any knowledge of the human visual system nor have many
artificial languages been developed on non-Indo European models.

An overview of what the Dynabook should be l ike, including display needs
and principles for language design, are found inC4].

3. Design an interim version of the Dynabook, and build a considerable number of them.

We felt that this step and the next one are the critical ones in our research. We had to get to the kids
and adults as quickly as possible so as not to be led astray by our own assumptions and hopes.

4. Make the medium of communication as simple and powerful as possible.

It should be qualitatively sirnpler and qualitatively more powerful than (say) LOGO. It should be
qualitatively more expressive than the best state-of-the-art “grown-up” programming language for
serious system design. It should be as “neutral” as possible to all conceivable simulations.

5. Explore the usefulness of such a system with a large number of short range projects involving many
users, ages 4 to 60, from vurying backgrounds, and with different needs and goals.

This phase would involve developing all manner of simulated media, both old and new; finding ways to
teach the ideas in the system; do user studies, experiment with peer-group teaching (e.g. 13 year olds
teaching 12 year olds), and so on.

Some of the projects we have undertaken arc explored in [6,7,8].

6. Re-extend the system in the light of our previous study and start to think about tlre next interim
version.

One of our guiding philosophies has been to do many working versions rather than to attempt a
long-range ‘complete solution’ in one fell swoop and risk not ever getting a working system.

7. Our current plans are to set up a community resource center containing a number of the interim
Dynabook systems for both open- and closed-shop use near school and playground ‘traffic’ patterns.

In order to find out some of the things we would like to know about how children and adults think
about their world, we really need to concluct a series of longitudinal studies which investigate hoiv
daily and casual use of a dynamic medium affect people’s way of doing things (and their lives).

We currently expect to start sett ing up this faci l i ty in the very mar future.

DATE 12-JUN-75 10:19:38

The Interim Dynab~k and Smalltalk .

The Interim Dynabooh is 8 completely self-contained system, dcsigrwd
simulations and human factors experiments. To the u;er, it nr,l~,lrs a>
inserted a disk memory containing about :500 lunge-c~ll;ivalt:nti of mar
very crisp high resolution B&W CRT or a !owcr resol.ition high-cluality

Other input devices hclutle a standard typowriter keyboard, a ‘chord’ keyboard (for sending
simultaneous signals), a ‘mouse’ (which inputs position as it is moved about on the table), and
varieties of organ-like keyboards for playing music. New input devices such as these may be easily
attached, usually without buildin,q a hardware interface for them.

Inserting A Disk Memory

The Music Keyboards

The Typing Keyboard

The Mouse

Chord Keyboard on Left, Mouse on Right

mprove

/DATE 12-JUN-75 10:19:38 PAGE 6

J

Visual output is through the display, auditory output is obtained from a built in digital-to-analog
converter connected to a standard hi-fi amplifier and speakers.

High Resolution B and W Display

I

Amplifier and Speaker

We will see in the next section that the Znterim Dynabook is powerful enough to be able to
produce real-time half-tone video animation, and real-time multiple-voice musical-tone synthesis.

Smalltalk is a very simple, comprehensive way of simulating dynamic models. The built-in primitives
of most programming languages (such as numbers, files, data structures, etc.), in Smalltalk, are
actually simulations built from more comprehensive ideas, including stutcs-in-process,
communication using messages, and classes and instances.

j Two of its basic goals are that simple things should be very simple, one should not have to read a
manual to do obvious things; and, complex things should be very possible, comprehensive
interactive systems should be easily programmed without ‘hair or prayer’.

As will be seen later in the paper, Smalltalk is a successful ‘extensible language’ because it focuses
squarely on representing the meanings of things through descriptions and gets its
syntactic extensibility ‘for free’.

Smalltalk’s main lineage can be traced to a combination of new control ideas found in CDL, with FLEX
and its precursors: Sketchpad, SIMULA, JOSS, and the B5000 [18,1-3,12-16-J.

pears 9-JUN-75 10:05:49 PACE 7

BeFore we discuss the ideas behind our current system, we present a sample portfolio of some of the
projects which kids and adufts have created in the past two years.

This was the first real system done by any OF our children; there have since been many more. The
child did not see any of our painting programs while working on this. She, very early in her
introduction to Smalltalk, decided that one or&t to be able to paint if the motese could tell
the pen where to go, ouer and QWP. She came in the next morning, wrote the program, and
it worked the first time. After that, she became positively ingenious in finding ways to turn every
possible programmatic situation into a way to paint. The idea of having various kinds of brushes and
paints was hers; the notion of having a ‘menus of the available repetoire was suggested by us, &be
method for achieving the menu was designed and programmed by her.

This was the first indication to us that the-building blocks OF Smalltalk actuallv were more powerful
and easier to use for the naive programmer than the more conventional ‘noun/v
structure/function’) primitive ideas of most current proerammina svstems.

erb’ (‘4 tta

A CPloroograplly/DrPdmintora System

This child next designed a class of dancers which could be controlled singly and together, then
choreographed them into a variety of dances. Next, she designed a ‘marionette’ class which bad wrist,
elbow, shoulder, ankle, knee, and hip joints. Two of these more sophisticated figures are used for her
real-time badminton simulation.

1

/ pears 9-JUN-75 14:43:56 PAGE 8

//

An BPlustratiow System: Progre~mmecl By cx PB-yecer old

This is one of the most complex systems done by ople of our children. The graphic objects can be located,
rotated, scaled, can have any number 0% sides, are any color which the system can produce, and the
entire system is controlled by prompting menus. Note also the ‘light buttons” on the objects which are
sites %QP ‘grabbing” and moving and object with the mouse.

7),’

/ DATE 12-JUN-75 10:19:38 PAGE 9
r

Spacewar: Programmed by 10-l Z-year olds

Spacewar blossoms spontaneously wherever a graphics display is connected to a digital computer. There
lln~,c been many different versions done by the kids in the past several years, ranging from peaceful
moon landings an d fleets of cargo ships, to the full fledged game. Star fields (complete with novae and
supsrnovae) for111 an interesting background.

._ ._ --_ =--_-

DATE 12-JUN-75 10:19:38
.L

A Flight Simulator: Programmed by a 15-year old.

This rather complex system uses an actual flight model which the studrnt found in an introductory
book on aeronautics. The artificial horizon is at the top of the panel Lvith the degrees-of-bank OVOP it.
The ‘stick’, pedals, and throttle can all be grabbed by the mouse. The sequence shows the plane in a
slow roll which is then corrected by manipulating the stick.

r-- -.__._ ----ExL- -
j

-/DATE 12-JUN-75 10:19:38 PAGE 11

J Windows and Different Fonts for Different Effects

The flight simulator shown previously used Smalltalk windows for displaying instrument values
and the horizon. Each window has as its content a Smalltalk object; they can be moved, stretched,
overlapped, and edited.

One of our goals was not to be worse than paper in any important way. The Dynctbooh is flexible to
the point of allowing its owner to describe just how knowledge is to be viewed, including tailor-made
printing quality fonts. Any character font can be described as a matrix of black and white dots. The
corners of the dots will not be perceived at normal viewing distance if the light level from the display is
high enough and the resolution is sufficient. Here we see a font in the process of being created and
displays of text in some of the fonts which are available.

DATE 12-JUN-75 10:19:38

I

Filing and Editing

Every description in the Dynabooh can be retrieved, shown, and edited in a completely uniform
way. Each class of objects (text, pictures, forzts, morlies, choruses) responds to the message
shoru by invoking its own method for showing itself on the screen. The displayed objects actively
watch for the the cursor to enter their boundaries, and if it does, the message edit is sent to the
object. In a manner similar to the show message, each class of objects can respond to the message
edit in its own appropriate fashion.

If the object is text, an easy to use and modify ‘modeless’ text editor with automatic justification is
invoked. Drawings and paintings have their own simple editors, as do musical scores, timbres, etc. A
docttment is simply a collection of related objects which may be automatically crossfiled by
contents including title, author, date range, selected keys, and anything else the owner desires. A new
class of objects may be added to a document in a completely independent fashion because no part of the
system has to be informed; instead, the new class simply adopts the conventional protocol of being able
to respond to the standard messages show, hnscursor, edit with useful local methods for
achieving these goals.

The current version of this system is able to automaticaliy crossfile tens of thousands of objects
including textual documents indexed by content, the Smalltalle system itself, personal records,
books, and so on. As shown in the examples, retrieval is done by simply filling in as much as is known
ahout the document into a blank template; the system will retrieve a collection of documents which fit
the description.

A Blank Document Ciass Template

The Document is Found
Reversed Text Indicates Submerged Parts

Filling in Identity Fields (any known combination, will do),
Invoking a Menu and Asking for a Retrieve

A Menu is Invoked at Bottom Margin
We want to make the template wider

Showing the Document Where to Put The Right Margin The Widened Document
Note Automatic Justification

mprove

DATE 12-JUN-75 10:19:38

Opening up the Submerged Parts

Grabbing More

lirplry
I

(.PI MVll, 91.
Disk I

Replacement is Automatic
(without command)

/DATE 12-JUN-75 10:19:38 PAGE 14

Moving Into The First Drawing Changing The Arrow

/I/ pears 9-JUN-7 5 16: 13: 10 PACIE 15

Curves

Smalllalh has a class of turtles which can crawl about OII the screen leaving (or not) a
variable width track of colored ink. A lurtle has a localion, n direction, a
tip-statc(up or down), nn ink-color, a boundary (which clips itj9 and any other
properties the owner might like. A rrirtle can be turned a relative anglep can go a
distance in its direcPion, cara goi% a location, and so on.

A powerful idea (borrowed from LOGO> is that the turtle is coordinate free, in that going
and turning are completely relative to the eurtWs current state. The erlrtle thus
lives in curwtuorld. A straight line has O-curvature, a circle has constant-curvature, linearly
changing curvature generates beautiful smooth curves. This may be contrasted with the cartesian
world in which 0 generates 8, a ramp generates B line, and a quadratic is required for circles and
simple curves,

DATE 12-JUN-75 10: 19:38 PAGE 16

Anirn,?tion a n d bIusic

Animation, music, an d programming can be thought of as different sensory uiccus of tlynamic
processes. Their common structural form is apparent in Smalltalk, tvhich provides a neutral
framework for expressing these ideas. All of the systems are equally controllable by ‘hand’ or by
program; drawing/painting are dire&ad by the mouse or with curve and area programs; musical
events are initiated with a piano-like keyboard or from a dynamic ‘score’. Timbres are the ‘paint’ of
musical expression as they contain the quality ar.d mood which different instruments bring to an
orchestration.

A Picture Animation System Programmed by Animators

Several professional animators visited us with a long-held dream for a ‘magic-slate’ which would
allow them to create high-quality animations by simple (and literally) “waving their hands”. They
wanted to paint pictures into an already running animation in order to take maximum advantage
of the ‘phi’ effect (which causes the main action of animation to be the change between

DATE 12-JUN-75 10:19:38

An Audio ,\nimation System Programmed by Musicians

Animation can be considered to be the coordinated parallel control througlr time of visual images.
Likewise, a system for representing and controll~
strong analogies to the visual world. Music is the
changes) which can be pnintecl different colors (timbre cl~nngcs); it has synchronization
and coordination, and a very close relationship between audio and spatial visualization.

Timbre Syrdcsis

We use several methods for real-time production of high-quality timbres; both allow arbitrary
transients, rnany indepcndcnt parallel voices, and are completely produced by programs: no special
hardware is used. The most interesting of these was developed [10,201 and allows independent dynamic
control of the spectrum, the frequency, the amplitude, and the particular collection of partials which
will be heard.

An instance of a timbre class showing
the amplitude change and spectral
change (clotted lines) over several seconds
of time. The area between the vertical lines
will be repeated until the note ceases.

imi,-.---- -- - - - - - -\-- -.I --I \- \-- \-. L- --I \-_- Jim--; \! i 1 !;‘,, -\.“8
I / ’! ‘;L-_ t.-----

Now the ratio of modulation is changed to emphasize
only the odd harmonics: producing a ‘clarinet’

Now a frequency deviation is drawn to
. . __

Here is what the (somewhat strange looking but
produce an initial portamento followed good sounding) wave looks like on a ‘scope.’
by a sharp vibrato.

We reach in and grab the spectrum control.
We want it to ‘bump’ in the beginning, and
then gradually increase.

Here, the ratio of modulation is changed to emphasize
all harmonic partials: producing a ‘trumpet’.

DATE 12-JUN-75 10:19:38

Sccra Capture und Editing 1: Dynamic Capture und Score Production.

This is a musical score capture system written by a novice progr;tI:lmcr v/ho is an experienced musician. ’
Thn system produces n display of a conventional rnu$ical scort’ dtrx:!ly from data obtained by .

playfng the music keyboard in real-time.

The Captured Score

Playing it in.

Score Capture and Editing 2: A Comprehensive Music Editor

Standard musical notation has a number of drawbacks: a large number of symbols must be
remembered, articulation can’t easily be shown (without cluttering with rests), precise duration
control is very tedious to notate, the staff is biased towards certain keys, and it is hard for kids to see
that similar sounding chords are really the same. Accordingly, most of our music editing is done in
terms of a simpler notation which uses length to show duration.

c’

r’l
-1

- --M- -.-
-

- --

A played-in score.

t
5;

=j
- -- -’- -,- - -.

I-

- i- .
- ,

=;

-- - ---?- =- -
-

-

Playing test notes with mouse This is the one! Grab another!

Di\TE 12-JUN-75 10:19:38 PAGE 19

I -
- --- y - -3- - ---- -’. . - ---~

Move it to ‘d’. There are two ‘thirds’ in chord. Double the octave

‘Slice’ the score, and...

=....- -1
t --2--- - . - -----. - 3

Pitch Dursticn m Rrc*k Sync A~II
Hw Bxkup Bcguum~ QIUC Cc y Shdt cv
. . . c-- C~lltrIC, --I-- cxl’J--,

stretch it to there, so . . .

-
=
--

.

---- -

--

. -- = . ..- - -- - -_..
=-- - -
C-. -

we get ritard.

These systems have a number of benefits for both children and adults:

The semantics are easy to understand since they intentionally are anthropomorphisms from the real
world. The strong similarities between the audio and visual worlds, and between the arts and the
sciences, are emphasized because a single vernacular which actually works in both worlds is used
for description.

Chiidren can gain skill and coordination by learning how to draw and play. The systems will show and
replay for them what they just tried, then allow them to compare their efforts to a more expert model,
much in the manner of tennis or skiing instruction.

The arts and skills of composing images changing in time can be learned in parallel with the acquisition
of muscular expertise since much of the ‘dirty work’ is automated. This is not a prosthetic but an
amplifier.

I

F

DATE 12-JUN-75 10: 19:38

Our Experience With Naive Users

PAGE 20

Smalltalk users have included children, ages 6 -15, and adults, both computer sophisticates and 1
noncomputer specialists. Although we have not followed enough children long e nough to deterlnine
whether their experience with Smalltalk has qualitatively changed their ways of viewing and 7

thinking about the worid, we have reached a number of subjective conclusions from our experience.

,I First and foremost, the ability to prop-cm is an inherent legacy of humankind. Everyone can do it.

Using Radia Perlman’s Rutton Box[i.l] we have seen children of three and four years old
consciously plan and ‘write’ symbolic procedures for drawing pictures. Eight year olds do simulations
of moon landings, ten year olds do their own SPACI%v’AR, twelve year olds design and implernezt entire
systems for illustration, choreography, and simulation. One of our 15 year olds has recently finished
an interactive flight simulator of fair complexity (it uses an aerodynamic model for moving from one
state to the next). Secretaries have successfully planned and added new ‘features’ to editing and
retrieval systems, artists, who have tried and failed in the past (with BASIC, etc.), have been able to
translate some of their yearnings into running simulations of their ideas.

It is only remarkable that some Ijeople find this remarkable.

Programming is the act of communicating descriptions of processes symbolically, the very same act as
with ‘natural’ language. We should be able to guess confidently that most of the problems encountered
will be those of a linguistic nature (e.g., as with learning French) rather than being due to
intellectual problems on the part of the learner.

Second, we have seen a clear sepuration between tl1.e skills associated with programming and debugging,
and those having to do with design.

An analogy: Smalltalk can be likened to an extensible Tinker Toy (Thinker Toy?) set. It contains a few
simple ideas, some already built struts and connectors, and some moldable plastic for making
unanticipated building blocks; it has been obvious to all of our users as to how these may be
used to build simple desired structures. Nor have they had any trouble with the mechanics of
molding new structural elements (this is easy and automatic in Smalltalk).

We can imagine children enjoying themselves immensely with a Tinker Toy set (as indeed they do),
and, in the process, they learn valuable, more general ideas about how things connect together and can
be manipulated in the 3-D world.

Children appear to have the same kind of experience in the ‘Thought-D’ world provided by Sma!!talk.

An adult structural designer may use his Tinker Toy set to test out a new idea for an arched span for a
new kind of bridge. The designer, after a few trials, will successfully span a large area with his Tinker
Toy model, and there will be no lack of motivation for extending the Tinker Toy set in the process.

Computer systems designers have found Smalltalk to be a exceedingly easy to use, friendly way to bring
their (sometimes very complex) ideas to life.

Suppose now that we bring an adult to the Tinker Toy set. After successfully making a few ‘kid-type’
models the adult decides to make a huge bridge. A massive failure results, and we can confidently
assign the reason not to any lack of ‘intelligence’ on the part of the adult. but rather to an innocence of
design knowledge having to dc with large structures. After all, it took a collection of the ‘smartest’
designers and builders more than 5000 years to invent the catenary arch and buttress --- ideas any
child can read about and understand today.

‘Nonprogramming’ ad&s have no trou,ble programming in Smalltalk. They do run into difficulty
when they attempt projects whcse structure they really don’t ILnderstand in any terms.

This parable illustrates one of the leading red-herrings concernin g the cult of intellignce in current
pedagogical thought: an incredible confusion between performance, skill, and ‘innate ability’.

Our method for teaching children and adults about programming. coupled with Smalltalk’s simple and
very neutral basis for describing dynamic situations, has eliminated many of the usual ‘linguistic’
problems having to do with vocabulary, place-holding, abstraction, grammar, etc., and has allowed us
to get closer to the ‘real problems’ which concern themselves with the kind of visualizations,
structures and skills the fledgling designer brings to this new area.

All of tllis suggests tlLat tlLe primary goal of a teacher (after learning to listen) is to find ways
to help learners develop in their he;& a good set of methods centered about the understanding
of exsting designs und the creation of new oites.

DATE 12-JUN-75 10:10:38

It :i-ill be very difficult, and also rather unesthetic, to develop a prosthetic which attempts to
unl2rstancl explanations and descriptions given by people who do not really understand the things they
a r e trying to describe.

It seenzs much more becLutiful to show that people can be amazingly more effectiue at dealing with
tilo:‘r world if they lam some powerful techniques und skills (perhaps with the aid of mediu) for
vis:ta!izing, part-c!r ,d-whole-ing, planning, symbolizing, manipulating, and avoiding debugging.

Some Principles \ti+ Use in Teaching

These ideas are fo::..:i in many places and many cultures. We came to them from our own experiences,
the Suzuki violin m:.:!lod, 0. I<. Moore, Piaget, Furth, Bruner, Minsky, Papert, and others.

7. Listen to the studxt.

Since we believe that teaching involves helping a student adapt his knowledge structures to a new
situation, we can guarantee ourselves (not to mention the stltdent) an unpleasant journey if we don’t
try to understand these gossamer schema at the outset.

Many of the current ways that things are done in Smalltalk come directly from listening
to the kids. SInnlltnlk, as an ‘extensible system, can easily ‘be’ any kind of tool that we
wish. We ourselves have remolded it several times.

2. IVcver teach anytiLing which has to be unlearned later.

In our csperience, humans are very poor at unlearning any kincl of skill, whether it be muscular or
mcr.:al. ‘This principle is we!1 undcratood by every teacher of music. ‘Tempting analogies’ which later
come back Lo haunt are esp&ally to be avoided.

We teach ‘straight’ Smalltalk, the very same system which adults learn. The very first
examples and methods to which the kids are exposed resemble strongly the most
sophisticated adult systems.

3. i’izver pace CL student in a wccy that will require future remediation.

Principle 2. basically says: don’t simplify to the point of a lie; Principle 3. is a corollary of this which
states: don’t put the student into a situation where h c will feel dumb and inept because a good enough
fou-dation has not yet been laid. Most kids do not understand the distinctions between skill, structure,
and intelligence any better than adults do and are apt to feel stupid rather than unskilled
in ne:v situations.

4. Hook OIL to existing fruitful structures when possible; if unfruitful concepts exist, don’t unteach
them, rather supply completely fresh orthogonal concepts.

&lost kids know about dictionaries and looking up the meaning of a word. The meaning can be an
explanation of a passive relationship or a dynamic act. In fact, every idea in mathematics and in
;;rogramming can be easily explained in dictionary oriented terms alone; this is a fruitful, useful
coilcept, and it ma!tes sense to use it with kids.

,%lan~’ other ‘natural language’ linguistic structures are ultimately dcacIZy antI we avoid them.
l,:xzmples arc: ‘nouns’, ‘verbs’, ‘pronouns’, inflections, and their counterparts in most programming
lz~r.,-l~ar~s: data structures, functions and control structures, variables, tagging type to names, etc.
Instead, we immediately give children a running example which clirectly exhibits the more fruitful
notions of stutcs-in-process communicating-with-messages found in Smalltalk.

5. Do not look over the student’s shoulder.

Aside from the obvisus reason of avoiding ‘putting the student under the gun’, there is also a great
difierence between performing and creating. In music, this is known as the difference
her:rve:n improvising and composing (and a greater diff erence could hardly be found, as any
musician will attest). We are much more interested in the design-oriented and planning processes
associated with unhurried goal-directed reflection than in the more shallow though flashy effects
obtained by virtuoso ‘thinking on onc*s feet’.

Vr’e capture every action which a student makes and can replay their session for our eyes later. We tell
every student that we do this, but the process cf capture is completely invisible and thus rapidly

f

DATE IF!-JUN-75 10:19:38 PAGE 22

ignored.

6. Teach and Show hZultiplt? Perspectives of Situations.

A typical problem with fledgling designers of all ages is a strong tendency to commit all of their short
term memory to a given perspective of a Situation. If it happens to hC an unfruitful view it mity be very
difficult for them to ‘bail out’ or even tell that it is unproductive. \Ve feel that the Piagetian example
of the tilted glass is much more the result of lack of practice in multiple viewing than the result of
physiological immaturity.

One of the striking things about design methodology is that ‘simultaneous’ use of a perspective and
its &al is remarkably more rewarding than using either separately.

A very global example is the duality of wholes-as-collections-of-parts found in Western science
und wholes-as-wholes found in Eastern philosophic thought.

The former has an important dualistic aspect itself: analytic (or top-down) vs. synthetic
(or bottom-up); both of these emphasize differences and boundaries: a corpuscular
theory. The Eastern philosophy emphasizes samenesses and cormcciion: a field
theory. As more complex systems are studied, the apparent differences between the two schools of
thought blur in the underlying sameness that characterizes duals.

The human nervous system vroduces reactions in both directions:

A ‘linear’ theory, useful for simple models such as walls made tram bricks, I~IIS tiown caci~y in 11wr e

interesting domains. A typical reaction of those whose prime mcthodo!ogy is centered about the linear
model is to attempt to ‘patch’ (or add epicycles to) the description rather than to recenter their
inner vision.

A linear theory of the Taj Mahal is that the bricks were brought to the clearing and added together
until the building appeared! It is very hard to see how the design process for the Taj Mahal (or of a
human embryo) can be fruitfully characterized as a collection of patches on simple assembly notions.

Relativistic philosophy, on the other hand, is much more a grand combination of the two points of
view: Every thing is every other thing because they are just local geometric states of the ‘same’
space, and conversely, there is a both a field lag and an attenuation associated with relative
distances and speeds which makes the concepts of objects, ancl parts reasonable to consider.

We try, partly in the spirit of principle 2, to show children about both aspects of design thought right
from the very beginning of their experience with Smalltalk.

mprove

DATE 12-JUN-75 10:19:38

Humans arld M e d i a

‘Devices’ which variously store, retrieve. or Innnipulate knowledge in the form of messages
embedded in a mcdil~~r hat;e been in existence for thousanc!s of years. People use them to
communicate ideas anti esthetic feelings both to others and back to themselves. Although
thinking goes on in one’s head, external media serve to materialize thoughts and, through feedback,
augment the actual paths which thinking follows. Methods discovered in one medium frequently
provide powerful metaphors which contribute new perspectives for notions in other media.

Every message is a simulation of some idea. It may be representational or abstract, isolated or in
context, static or dynamic. The particular essence of a medium is very dependent on the way
messages are embedded, changed, and viewed.

Computers were originally designed to do arithmetic computation; a powerful idea was the notion of
controlling the computation from a description of the algorithm held in a writable store. Even
more powerful is this corollary:

TlLe content of the computer is descriptions of processes; the ability of
computers to simulate the details of any descriptive model means that the computer,
viewed as cc medtum itself, can be all other media if the embedding and viewing
methods are sufficiently well provided.

This ‘pocket universe’ (a metaphor we like) needs an epistemology if not a metaphysics.

Some Observations Which Led To Smalltalk

The basic I)rinciple of recursive design is: make the parts have fhe sume power and capabilities
as the whole.

The ‘whole’ is a digital co:nputer, a black-box to which we send messages and receive
replies, which contains state-in-process.

From the outside, we don’t know very much about the m,.-(hods which the black box uses to send back
replies. When we request:

sine 30

we don’t know whether the reply is computed by table-lookup, Chebyshev approximation, a summed
series, or a combination of these. And, in fact, we don’t really care, as long as the expected reply comes
back consistantly, quickly, and without irrterfcsing with other things we may also be doing.

The principle of separating desire (a semantic notion) from method (a pragmatic notion) is
central to Smalltalk.

It is interesting to note that none of the parts of most programming languages, ‘data
structures’, ‘functions’, and ‘control structures’ have the same power as the whole; instead
they are dilutions of the idea of a computer.

The Five Simple Ideas of Smalltalk

1. There are only objects.

The numbers 3, 4.5, 1.2-I5el4 are each objects; so are the words: this,
identifier, sine, file3-l; so is the collection: (this is a collection of words); and the literal
piece of text: ‘IILis is a piece of text’.

2. Each object has memory.

In fact, each object is in charge of its knowledge, how it is represented, and how it may be used. Each
object has some way to distinguish itself from other objects. For instance, the object representing the
number 3 might have in its memory the magnitude ‘3’ stored in some fashion; the object
representing the number 4.5 could use the same or a different technique to remember the
magnitude ‘4.5’.

3. Objects communicate with each other by sending and receiving messages.

The first three ideas constitute a recursion on the notion of a computer. Idea (3.) actually includes idea
(2.) but both have been included for clarity.

l ?

/
. I DATE 12-JUN-75 10:19:38 PAGE 24

* /

In Smalltalk, a mes-age is sent to an object by first stating the object, then the message.

1 3 sign

sends to the object ‘3’, a message consisting of the word ‘sign’. The response to a message is entirely up
to the receiver. WC might hope that a ‘+’ will be sent back consistantly from each number of positive
magnitude.

,1 ‘powerful idea’ is the notion of grouping objects which have similar properties into classes so
that they may be discussed in general. In Smalltalk we currently find the aclditional two ideas:

1. Every object belongs to a class.

A class is thus an object (from 1.); there also must be a class: class (from 4.). ‘Obvious’ classes
include numbers, words, collections, files, text. More exotic classes include font characters,
pictures, pens, sets, paragrapirs, windows, documents, timbres, voices, choruses, and of course,
class class, whose members contain the definitions of numbers, words, and so on.

Part of the memory of each object in Smalltalk is the knowledge of its class membership.

5. !I cltrss is the collection of receivers for legal messages to objects in the class, coupled loith
methods for producing a reply.

There are many ways to accomplish idea 5. We have tried sevcral[3,8,9]. Our current approach
has a minimum of mystery and requires a minimum of faith in order to understand and use classes.

To define a class description, we use the notion of a dictionary containing entries, each one of which is a
detector and replier for a particular message. A class description is thus just one of the
many kinds of documents handled by the information system described previously.

An entry in the class description of number might be:

which means,

the then if the is less then r e t u r n a o t h e r w i s e a
l i teral current than to the l i teral return to

i

i teral
word member zero s e n d e r p l u s the sende m i n u s

of number

sign + (Self co)o (77 ‘+’) l? J-t I

Children and Smalltalk

Our basic approach to teaching Smalltalk to both adults and children is tp show them a simple,
rl;nning example of a Smalltalk class and the objects which belong to *t. After they ‘play’ with it for a
\\llilr, we get them to ‘guess’ the class definition, and finally they add a new feature to the
description. In the procrss of editing an already running program. the new users learn quite a
fe\v things about the form of a description which :ve would otherwise have to explain in a
mysterious manner.

I

First. we get them to type:

@joe + box c l

A square appears on the screen. We say: “You’ve just made a box called ‘joe’ “.
Now they try:

cl
joe grow 30

and the box ‘joe’ grows accordingly. We say: “You’ve just sent a message to ‘joe’ that it understands,
and it responded accordingly”. 0joe turn 45

.+
DATE 12-JUN-75 10:19:38 PAGE 25

This is another message that ‘joe’ understands.

eaclrtime (joe turn 25)

Now the student has made a simple ‘movie’ which can be terminated via the ‘escape’ key.

t?jill + box

Another square appears on the screen.

jill grow -10

‘jill’ becomes smaller.

jill turn 50

‘jill’ turns just as ‘joe’ did. Evide.ntly ‘jil1’ and ‘joe’ can receive similar messages and produce similar
responses.

jill is ?
box

‘jill’ sends back the answer ‘box’ when asked what kind of object she represents.

jot is ?
box

So does ‘joc’.

eachtime : joe turn 25. jill turn - 11.

produces a two object animation with a limited plot.

Now we get the children to ‘guess’ what the general description of the class ‘box’ might look like.
They have seen five example transactions: make-a-new-one, grow, turm, draw, undrax, each
invokes a different set of actions. Since we have been using the word ‘message it is not difficult for the
children to ‘guess’ that there will be at least five sections to ‘box’, each dealing with a particular
action. The idea of ‘looking’ at the message to see what’s there is introduced. Finally, we ask them to
type:

show box

to see what the description of ‘box’ really looks like:

@box + class : size tilt positionleft positiondown properties of a box

t-
isnew j (GSpositionleft + 300. init ial posit ion

$m;itioOndown + 100. init ial posit ion
i f .

G%ize f 50.
init ial heading
init ial s ize

SELF draw. cause new object to appear on screen
lr SELF) send hack our new object to sender

c;fdraw ;, (0 penup te l l 0 to pick the pen up (no marks)
goto positionleft positiondown travel to the new posit ion
turn tilt turn to the heading for this box
pcndrr. p u t tllc pen down (t o make nwks)
do 4 (8 go size turn 90)) II raw n sqr?nrc in now orientation

qundraw + (a’s ink f- white.
SELF draw.
o’s ink c black.

Qgrow C. (SELF undraw.
G+size f- size f 1.
SELF draw)

*turn + /SELF undraw.

turn turtle’s ink to white
draw with w h i t e t o CT;LSO sllapc
reset ink hack to black

erase oruselves at old posit ion
increase size by value from message
redrox ourselves w i t h n e w s i z e

eras.2 oursclvcs at old posit ion

DATE 12-JUN-75 10:19:38 PAGE 26

C?tilt f tilt -t 1. incressa t i l t by value from message
SELF draw). redraw ourselves with new t i l t

shows the various messages that can be sent to any member of the class box.

The various iconic symbols were made up by the first group of children that we taught to program in
order to clarify important ideas in their minds.

8

:

isnew

SELF

The kids prefered to use Q to indicate a literal symbol since in its typical
use:

@joe

(meaning the literal symbol ‘joe’ rather than what (or who) ‘joe’ may
stand for), the hand points directly at the symbol itself.

We might guess that:

C?joe 6 box

means that we are sending the literal symbol ‘joe’ the message: + box. What
happens is that ‘joe* looks up his meaning and changes it to the reply sent
back by ‘box’ (which, of course, is a new instance of ‘box’).

means that the following symbols will be local properties of each created
object. In the ‘class’ human, we might find the property ‘eye-color’; each
instance of human would have a local value (say) ‘blue’ or ‘brown’.

is a test to see if a new irlstance is to be created. This a much simpler and less
mysterious way to do initialization than with an infinite loop and ‘pause’.

will skip the next object if seen by ‘false’. i.e. 3<4 =r (‘yesyes’) will have
value ‘yesyes’.

since there are typically many instances, SELF stands for the one currently
receiving the message.

replies back to the original ‘sender’ of the message.

‘looks’ in the message to ‘see’ if a literal word is there. Its reply is true or
false allowing it to be tested with ‘3’.

a symbol which stands for one of the many available Smalltalk turtles.

this symbol means receive the value of the next set of things in the message.

Instead of trying to get the children to understand this definition in any crisp Cay, we tell them a
little bit about isnew, 3, SEL.“, 8, +, 0, 1 and almost nothing about C?’ and I:‘. Then we ask
them to see if they can imagine how they could get any box to move to some place on the screen.

They use grow and turn as models. Their first articulation of the new method is usually
very much like:

*move 3 [SELF undraw.
. ..something to change the position....

SELF dralu)

They say:

If ourself sees the word ‘move in the message, then we get ourself to undraw (because we are going
somewhere else), we do something to change our knowledge of where we are, then we redraw ourself
[just like in ‘grow’ or ‘move’).

Now they look closer at. the names at the top of the description, the first two of which have already
been used for ‘size’ and ‘tilt’. ‘positionleft’ and ‘positiondown’ look very hopeful (especially with
some hints from us). Now they arc ready to understand ‘draw- and the turtle (8). ‘I’hey see that the

DATE 12-JUN-75 10:19:38

turtle picks its pen up, goes to ‘positionleft’ and ‘positiondown’, then puts its pen down and draws a
square (they find out the latter by trying it themself).

It really looks as though they just need to change ‘positionleft’ and ‘postitiondown’ by receiving new
numbers from the message exactly unalogous to the previous examples. They write:

*move 3 (SEI,E’ undraw.
@positionleft t 8.
@positiondown t 8.
SELF draw)

Instead of getting them to learn about the editor at this point, we provide them with a simple class
which does the update called: addto. So they actually type:

addto box (+$move 3 (SELF undraw.
GPpositionleft + 8.
@positiondown + 8.
SELF draw))

This works very nicely when they try:

joe move 400 100

1Ve take as long as necessary to get to this point with the children (usually 1 or 2 sessions). Although
there is quite a strain on their short-term memories, the benefits are tremendous compared to more
atomic bottom-up approaches. From here there are many paths that can be followed:

1Ve ask them to try:

mou.se left
344

mouse down
112

ar,cl their abbreviations:

ml

md
3.!4

112

These are the mouse locations expressed as ‘left’ and ‘down’ offsets from the upper right hand corner
of the screen. They try:

joe move ml md

and ‘joe’ goes where they point! &lany children spontaneously ‘see’ that they can use ‘eachtime’ to do
these operations continuously:

eaclrtime (joe move ml md)

and ‘joe’ follows! Even more interesting, many see that they can ‘paint’ if they just were to remove
thz ‘SELF undraw.’ line from their previous definition. They are now ready for the editor which
handles tile programs in a structured way and automatically makes sure that parenthetic levels are
consistant. When this is clone, they have made a controllable ‘brush’ which can take on various sizes
and orientations (by doing ‘grow’ and ‘turn’). Moreover, they know that they can create a large
number of tailored brushes and give them names.

The power of classes and instances nolo starts to make itself felt.

Our children usually spend about 6 to 8 sessions explorin g in this fruitful neighborhood. This is
important because our experience indicates that learning to program progresses in little leaps with
intervening ‘plateaus’, where, for a \Fhilc, it is difficult for the students to ‘see’ new things. Then
they do and another leap takes place. This reminds us very much of the typical progression involved i n
acquiring skill at playing music or sports. Since the plateau areas are very important, it is necessary
to make sure that there are plenty of fun things to do while the inner ‘coordination’ is being built.
Otherwise, it is possible for boredom to set in before enough skill is obtained to really make the new
area intrinsically interesting.

7
/

J D A T E 12-JUN-75 10:19:X? PAGE 28

The children typically will manipulate every part of the ‘box’ description. They change the ‘shape’
routine to draw triangles and other polygons and thus learn about ‘turtle geometry’ by the back door.
They may make the ‘shape maker’ another class entirely and add another parameter, ‘shape’, to the
box description.

After a while, rocket-ship and airplane shapes replace the polygons. New messages are added, like:
fly, bounce, open, close, and so on. They discover that they only have to continuously add some small
constant number to the position holders to get an animation with simple linear motion.

Everything, without exception, in Smalltalk is represented as active instances of classes, and,
the ‘box’ class is an ‘archetype’ of most of the already ezistin,= Smalltalk classes. Numbers, the
turtle, dictionary structures, ‘collection baskets’, schedulers, all look very much like ‘bon’. When
the children are ready to invent classes of their own, they have not only a bag of tricks but a fairly
comprehensive methodology for representing their own ideas.

We feel this is why they are able to handle many of the notions involved with systems design at such
an early age and comparitively low level of sophistication.

Artificial Languages vs. Automatic Programming

This paper is about Personal Computers for Personal Computing by noncomputer professionals of
all ages. We would characterize our approach to be that of providing very powerful means to express a
user’s clesircs and methods through an artificial language rather than to supply a system for
automatic programming[22], although the distinction between the two areas is not as crisp
as it might be.

h’ot too many years ago, FORTRAN and ALGOL, were hailed as ‘automatic programming’ systems
because they automated many nasty assembly code tasks, such as subroutines, arithmetic evaluation,
storage allocation, files, and input-output.

In this limited sense, Smalltalk is an ‘automatic programming’ language since it handles many more
of the background needs of a user than ‘higher-level’ languages of the sixties. However, ‘automatic
programming ’ in the seventies has a different connotation which constrasts rather sharply with the
‘artificial language’ approach to building running programs.

Automatic Programming vs. Artificial Language

Sloppy (natural) discourse Clear (rather crisp) discourse
‘Intelligence’: (quasi)-human model Simplicity, Consistancy, Generality
Knowledge of Problem Domain Knowledge about the nature of Description
Natural Language Semantics Model-Descriptive Semantics

(Nouns, Verbs, . ..) (states-in-process, communication, ..,)
Declarative Some imperative sequences

We like the latter, not only.because it work s, but because it is a ‘convivial tool’ (in the sense of
Illich): the innards of a system such as Smalltalk are more available and non-intimidating to the user
for perusal and modification than that of a Model T Ford in the 20’s.

We don’t like natural language programming and clescription very much because we feel that most
natural languages lack clarity and focus (they were after all invented to talk about farming and
cows).

A remarkable exception to this is Jong.gwo-hush or Mandarin Chinese, whose features and
signs are the most ‘orthogonally’ organised of any human tongue. In the Indo-European sense of the
words, Chinese has no inflections, nouns, verbs, or prepositions. There is a remarkably small basic
vocabulary and a simple syntax of great expressive and metaphorical power.

In a progression starting with Sanskrit, to Latin, to the Romance Languages; English is more like
Chinese than any of them and becoming more so every century.

Conclusions

We feel that a promising future for human-human and human-machine communication will bc the
devclopement of a simple human-oriented artificial language with great expressive power. It is needed
for the same reasons which brought forth mathematics (as an artificial laquage) in the 16-20
centuries: not only are there new ideas and \vays of looking at them afoot in the world, but the old
framewor!cs debilitate their cxprcssion and communication.

DATE 12-JUN-75 10:19:38

Smalltalk is nowhere near what is needed; it shows just enough of what the future might be like to
motivate further designs.

especially to Dan Ingalls who brought the ideas of Smalltalk to robust life, Adele Goldberg who
zestfully managed the kids and a thousand other things, Chris Jeffers ‘properties person’
extraordinary (who alone knows where everything is), and to all the people in the Learning Research
Group and elsewhere in PARC who worked hard on Smalltalk and the Interim Dynabook.

From the Learning Research Group

Permanent Stuff
Adele Goldberg
Dan Ingalls
Chris Jeffers
Alan Kay
Diana bierry
John Shoch
Dick Shoup

Visitors

Ron Baecker
Dennis Burke (age 12)
Barbara Dcutsch
Marian Goldeen (age 13)
Susan Hammett (age 12)
Bruce Horn (age 15)
Tom FIorsley
Lisa Jack (age 12)
Ted Kaehlcr
Kathy llansficld (age 12)
Eric lvlartin
Steve Purcell
Dave Robson
Steve Saunders
Bob Shur
Dave Smith
Bonnie Tenenbaum
Steve 1Vcyer

From Other Groups at PARC

Patriclc Baudelaire
David Boggs
Bill Bowman
Larry Clark
Jim Cucinitti
Peter Deutsch
Bill English
Bob Fle::al
Ralph Kimball
Bob Metcnlfe
Ed McCreight
Mike Overton
Alvy Ray Smith
Bob Sproull
Larry Teslcr
Chuck Thacker
Truett Thach

mprove

mprove

;ji DXTE 12-JUN-75 10:19:38
I

PAGE 30

References

[l] Kay, Alan, FLEX: an extensible simulation language which can be directly executed by
computer. Computer Science Note, Septcrnher, 1965, University of Utah, Salt Lake City.

[Z] ---------, FLEX, a flexible extensible language. MS. Thesis. Dept. Com. Sci., May 1968,
University of Utah.

[3] ---------, The Reactive Engine. Ph.D. Thesis. Dept. Corn. Sci., Sept. 1969, University of
Utah.

[4] ---------, A personal computer for children of all ages. Proceedings of the ACM National
Conference. August 1972, Boston.

[5] ---------, A dynamic medium for creative thought. Proceeding of the Nationat Council of
Teachers of English Conf. November 1972, Minneapolis.

[6] ---------, Goldberg, Adele (editors), and the Learning Research Group, Dynamic Personal
l?ledia. (in press June 1975), Xerox Palo Alto Research Center.

173 Goldberg, Adele, Smalltalk and kids --commentaries. PARC-LRG-3, June 1974, Xerox Palo
Alto Research Center.

[S] ---------, Classroom communication media, ACM SIGCUE TOPICS in Instructional Computing,
Vol 1, Teacher Education, Jan. 1975, (with Bonnie Tenenhaum).

[9] Feurzcig, W., et. al., Programming-Languages as a conceptual framework for teaching
muthematics. Final report on BUN Logo Project, June 30, 197 1.

[10) Papert, S., Teaching children thinking, ZFZP Conference on Computer Education, 1970,
Amsterdam: North IIolland.

[1 l] Papert, S., Teach children to be mathematicians versus teaching about mathematics, Inter.
Jcur. Math. Educ. Sci. Tech., Vol 3, 249-262, 1972.

[12 J Sutherland, Ivan, SKETCIIPAD: a man-machine graphical communication system, MIT
Lincoln Laboratory TR 296, May 1965.

[131 Dahl, O-J, et.al., SIhlULA, an a!gol based simulation language, CACM, IX, 9, Sept. 19GG.

[I43 ---------, SIMULA--common base language, Norwegian Computing Center, Oslo, Norway,
1970.

[153 Shaw, C., JOSS: a designer’s view of an experimental on-line computing system, AF’IPS
Conference Proceedings, XXVI, I, Fall, 1964.

[16] Barton, R. S., A new approach to the functional design of a digital computer. Proc. WJCC,
1961.

[171 Fisher, D. A., Control structures for programming languuges, Ph.D. Thesis,
Carnegie-Mellon University, Pittshurg, 1970.

[18) McCarthy, J., et. al., LISP 1.5 Progrummer’s Manual, Cambridge: MIT Press, 1962.

[191 Chowning, J., The synthesis of comples audio spectra by means of frequency modulation.
J. Audio Eng. Sot. 21, pp 526-534, 1973

[ZO] Saunders, S., Improved Fhl audio synthesis methods for real-time digital music generation.
ACM Comp. Sci. Conference, 1975, Washington, D.C.

[21] Balzer, R., Automatic Programming. USC/ISI, RR-73-l

f

mprove

