B

et A
‘&
\\'\

Invited Paper:
Meeting on 20 Years of Computer Science

e ey

r
b
[l
I O
|~
=
| &
[

Personal Computing

by
Alan Kay
f.earning Research Group

Xerox Palo Alto Research Center
Palo Alto, Californie, USA

Instituto di Elaborazione della Informazione, PISA, ITALY

mprove
Personal Computing. In: Meeting on 20 Years of Computing Science.. Instituto di Elaborazione della Informazione, Pisa, Italy, 1975

Alan Kay Media Center: http://mprove.de/diplom/referencesKay.html

More about the history of GUIs and Hypertext: http://mprove.de/diplom/

DATE 12-JUN-75 10:19:38 PAGE 2

Invited Paper:
Meeting on 20 Years of Computer Science
Instituto di Elaborazione della Informazione, PISA, ITALY

Personal Computing
by

Alan Kay

Learning Rescarch Group
Xerox Palo Alto Research Center

Introduction

Imagine having your own self-contained knowledge manipulator in a portable package the size and
shape of an ordinary notebook. How would you use it if it had enough power to outrace your

senses of sight and hearing, enough capacity to store for later retrieval thousands of page-equivalents
of reference materials, poems, letters, recipes, drawings, animations, rnusical scores, waveforms,
dynamic simulations, and anything else you would like to create, remember, and change?

Several years ago, we crystallized these long-held desires into a design idea for a personal dynamic
medium called the Dynabook. We felt that the hardware power for the Dynabook would be

inevitably available in ten years time, hut there was no reason to believe that it would be easily usable
by its millions of potential owners if progress in man-computer communication continued at its present
rate.

In particular, we wanted our range of users to include children from age 5 or 6 and 'noncomputer
adults’ such as secretaries, librarians, architects, musicians, housewives, doctors, and so on. We felt
strongly that the major design problems of the Dynabook lay in the area of communication

rather than in new hardware architectures.

Since it is very difficult to design such an integrated and comprehensive system 'Aristotle fashion'
(from one's hammock); we, with others at PARC, designed and built a number of stand-alone
self-contained Interim Dynabooks in order to have a solid test-bed for our ideas. These machines
are the environment for our experimental communications medium, Smalltalk. Both the

Interim Dynabooks and Smalltalk have been used by children and adults.

The Dynabook Mockup The Interim Dynabook

DATE 12-JUN-75 10:19:38

Design Background

The first attemnpt at designing this kind of higher-level personal metamedium was the
development of the FLEX Machine in 1967-69[1,2,3]. Much of the hardware and software was
successful from the standpoint of computer science state-of-the-art research but, as is so often the
case, lacked sufficient expressive power to be truly useful to an ordinary user. At that time started to
appear Papert and Feurzeig's[9,10,11] pioneering work having to do with helping kids learn

how to think by giving them an environment in which thinking is both fun and rewarding.

A Drawing of the FLEX Machine . A Turtle Ma..
Shown On Its Own Display Screen
ca. 1968[3]

They chose a time-shared computer and devised a simple though comprehensive language, called
whnich combined some of the best features of JOSS[15] and LISP[18]. Using LOGO, the
children (ranging in age from 8-12 years) learned to control a number of exciting activities: a robot
turtle which can draw, a faster CRT version of the turtle, and a simple music generator.

The LOGO work radiates a compelling exciterment in several directions.

First. the children really can program the turtle and the music box to do serious things. The programs
use symbols to stand for objects, contain loops and recursions, require a fair amount of visualization of
alternate strategies before a tactic is chosen, and involve interactive discovery and removal of *bugs’ in
their ideas. As Papert points out, the children are performing real mmathematical acts of a kind,

scope, and level not ever achieved by many college graduates.

Second, the kids love it! The interactive nature of the dialogue, the fact that they are in control,

the feeling that they are doing real things rather than playing with toys or working out

'school’ problems, the pictorial and auditory nature of their results, all contribute a tremendous sense
¢f accomplishment to their experience. Their attention spans are measured in hours rather than
minutes.

After seeing the faces of children suddenly discovering that they are "doers” acting on the world,
rather than "things"” being acted upon, it was clear that the next attempt to design a personal
computer should be done with children strongly in mind.

First, having children as users would throw sharply into focus the expressive communication problems
which had caused difficulty with the FLEX Machine. In addition, it might be possible to discover why
the LOGO kids had certain difficulties of their own having to do with naming and parameters, with
partitioning their problems reasonably, and why they appeared to reach a plateau: they could design
and write certain kinds of constructive programs but never quite got to the point where they could do a
real system.

Second, children really need more computing and expressive power than most adults are willing to
settle for when using a time-sharing system; the best that time-sharing can offer directly is slow
control of crude wire-frame green-tinted graphics and (even cruder) square-wave 'musical’ tones. The
kids, on the other hand, are used to high-bandwidth media such as as finger-paints, water colors,
color TV, real musical instruments, and hi-fi records. If the 'medium is the inessage'’, then the
message ¢f low bandwidth time-sharing is 'blah'!

g B

DATE 12-JUN-75 10:19:38 PAGE 4

Our Approach

At the outset, we decided to admit that the design of a truly useful dynamic medium for everyday use
was a hard but extremecly worthwhile problem which would require both many years and several
complete interim hardware/software systems to be designed, built, and tested. Approach:

1. Conceptualize a "Holy Grail” version of what the eventual Dynabook should be like in the future.

This image will provide a rallying point and goal which will remind us of what we are trying to do
while the sometimes grubby spadework of producing intermediate systems is in progress.
An extrapolation (and compression) of the FLEX Machine[4].

2. Do the research in human factors, psychology of perception, physics, and language design which is
prerequisite to any serious attempt at an interim system.

Very few displays have been designed using any knowledge of the human visual system nor have many
artificial languages been developed on non~Indo European models.

An overview of what the Dynabook should be like, including display needs

and principles for language design, are found in[4].

3. Design an interim version of the Dynabook, and build a considerable number of them.

We felt that this step and the next one are the critical ones in our research. We had to get to the kids
and adults as quickly as possible so as not to be led astray by our own assumptions and hopes.

4. Make the medium of communication as simple and powerful as possible.

It should be qualitatively simpler and qualitatively more powerful than (say) LOGO. It should be
qualitatively more expressive than the best state-of-the-art "grown-up” programming language for
serious system design. It should be as "neutral” as possible to all conceivable simulations.

5. Explore the usefulness of such a system with a large number of short range projects involving many
users, ages 4 to 60, from varying bachkgrounds, and with different needs and goals.

This phase would involve developing all manner of simulated media, both old and new; finding ways to
teach the ideas in the system; do user studies, experiment with peer-group teaching (e.g. 13 year olds
teaching 12 year olds), and so on.

Some of the projects we have undertaken are explored in [6,7,8].

6. Re-extend the system in the light of our previous study and start to think about the next interim
version.

One of our guiding philosophies has been to do many working versions rather than to attempt a
long~range '‘complete solution' in one fell swoop and risk not ever getting a working system.

7. Our current plans are to set up a community resource center containing a number of the interim
Dynabook systems for both open- and closed-shop use near school and playground ‘traffic’ patterns.

In order to find out some of the things we would like to know about how children and adults think

about their world, we really need to conduct a series of longitudinal studies which investigate how

daily and casual use of a dynamic medium affect people's way of doing things (and their lives).
We currently expect to start sctting up this facility in the very near future.

DATE 12-JUN-75 10:19:38

The Interim Dynabook and Smalltalk

The Interim Dynabook is a completely self-contained system, designed-as-a-whole from
simulations and human factors experiments. To the user, it appears as a small box (in which can be
inserted a disk memory containing about 1500 page-equivalents of manipulable storage) connected toa
very crisp high resolution B&W CRT or a lower resolution high-quality color display.

Other input devices include a standard typewriter keyboard, a ‘chord’ keyboard (for sending
simultaneous signals), a 'mouse’ (which inputs position as it is moved about on the table), and
varieties of organ-like keyboards for playing music. New input devices such as these may be easily
attached, usually without building a hardware interface for them.

Inserting A Disk Memory

The Typing Keyboard

The Mouse

The Music Keyboards

Chord Keyboard on Left, Mouse on Right

mprove

o S°

DATE 12-JUN-75 10:19:38 PAGE 6

Visual output is through the display, auditory output is obtained from a built in digital-to-analog
converter connected to a standard hi-fi amplifier and speakers.

High Resolution B and W Display Amplifier and Speaker

We will see in the next section that the Interim Dynabook is powerful enough to be able to
produce real-time half-tone video animation, and real-time multiple-voice musical-tone synthesis.

Smalltalk is a very simple, comprehensive way of simulating dynamic models. The built-in primitives
of most programming languages (such as numbers, files, data structures, etc.), in Smalltalk, are
actually simulations built from more comprehensive ideas, including states-in-process,
communication using messages, and classes and instances.

; Two of its basic goals are that simple things should be very simple, one should not have to read a
manual to do obvious things; and, complex things should be very possible, comprehensive
interactive systems should be easily programmed without 'hair or prayer'.

As will be seen later in the paper, Smalltalk is a successful 'extensible language’ because it focuses
squarely on representing the meanings of things through descriptions and gets its
syntactic extensibility 'for free’.

Smalltalk's main lineage can be traced to a combination of new control ideas found in CDL, with FLEX
and its precursors: Sketchpad, SIMULA, JOSS, and the B5000 [18,1-3,12-16].

pears 9-JUN-~75 10:05:49 PAGE 17

Interim Dynabook Rotogravure

Before we discuss the ideas behind our current system, we present a sample portfolic of some of the
projects which kids and adults have created in the past two years.

A Menu Driven Painting Program: Programmed by ¢ 12 year-old

This was the first real system done by any of our children; there have since been many more. The
child did not see any of our painting programs while working on this. She, very early in her
introduction to Smalltalk, decided that one ought tc be able to paint if the mouse could tell

the pen where to go, over and over. She came in the next morning, wrote the program, and

it worked the first time. After that, she begame positively ingenious in finding ways to turn every
possible programmatic situation into a way to paint. The idea of having various kinds of brushes and
paints was hers; the notion of having a 'menu’ of the available repetoire was suggested by us, the
method for achieving the menu was designed and programmed by her.

This was the first indication to us that the-building blocks of Smalltalk actually were more powerful
and easier to use for the naive programmer than the more conventional ‘noun/verb' ('data
structure/function’) primitive ideas of most current programming systems.

m_mznﬂlml_mi] Nu=EeE

EEIEI[IILJE]E]UUL 100

Ve
i

A Choreography/Badminton System

This child next designed a class of dancers which could be controlled singly and together, then
choreographed them into a variety of dances. Next, she designed a 'marionette’ class which had wrist,
elbow, shoulder, anklie, knee, and hip joints. Two of these more sophisticated figures are used for her
real-time badminton simulation,

11 . TIT

pears 9-JUN-75 14:43:58 PAGE 8

An [llustration System: Programmed by a 12-~year old

This is one of the most complex systems done by one of our children. The graphic objects can be located,
rotated, scaled, can have any number of sides, are any color which the system can produce, and the

entire system is controlled by prompting menus. Note also the 'light buttons' on the objects which are
sites for ‘grabbing’ and moving and object with the mouss.

DATE 12-JUN-75 10:19:38 PAGE 9

Spacewar: Programmed by 10-12-year olds

Spacewar blossoms spontaneously wherever a graphics display is connected to a digital computer. There
have been many different versions done by the kids in the past several years, ranging from peaceful
moon landings and fleets of cargo ships, to the full fledged game. Star fields (complete with novae and
suparnovae) form an interesting background.

DATE 12-JUN-75 10:19:38

A Flight Simulator: Programmed by a 15-year old.

This rather complex system uses an actual flight model which the student found in an introductory
book on aeronautics. The artificial horizon is at the top of the panel with the degrees-of-bank over it.
The 'stick’, pedals, and throttle can all ba grabbed by the mouse. The sequence shows the plane in a
slow roll which is then corrected by manipulating the stick.

- ol

Welcaane te the XEROX Flight Sihnnlacr

Welcane te-the XEROX Flighe Shmulvcr

\
J (3] S 4 DY 46 po -1 5 2
Wtunector inspecd ucl v pere ut Wiimneter hspect el Vi persomt cleck™
meters KPH LITERS My theestl Jeters K P LUFERS Mps 1hrettfe k veles
3 | % DONE
{ ~ FIRE
- I & . 310p
1 ! : NFUTRAL
] SEND
: . . INVERT
FFroale] [TADAR] (a7 el ‘e SLEED
i fn 1
['
— T -1
Wl e the XEROX Fligbt Suanlitcr Wedecrne o the XEFROX Flipha Stnnlan ¢
o3 25 R4 s TJ 1 jN o 100] ' [P 1
deunetcr wrspeed Tned v ‘.)- roeont . .; 1 nlil:u ter lllt | <t ro-nt Ty
meters LA 41} LITERS mMps thre 2l veles meters LIERn NU’ I retth t veles

R X
: | s, Dt |
. | RN

4 S10p
: : B BA |
e R y
) e |

ol [HARAR] ! fErer] | AR ; srirg

i - l]

Welcene to the XEROX Flight Shuuliter

o9 46 100 J J f
wdipneter wbrspeed e vsi percent cleck
maters K PH LITERS Mps throtle rycles

DONE
X FIRE.
SRS Y S STOP
NFUTRAL
SEND
INVERT
[) e

o1 99

DATE

Windows and Different Fonts for Different Effects

12-JUN-75 10:19:38

he box @ x v sioc tilt
s Wo
hiTx ity € 255,
W size « S
[T 1) Ry eA
SELF dirawn
éidriws
tpaint X .
(2 turn tilt,
squire size.
)
Sundriws
1(& white.
SELF draw.
& bk
$turis
ISELF wvdraw.
6 tilt wtiln e 5o
SELF drawt
Sprews
1SELF imudraw.
@size ¢ size + 3,

SELF draw i}

tedat

Hcut
O ilin "bexes’y

LT
du hedefentchart

3¢ hed « fontchar?

Qschesfentchart

i

PAGE 11

The flight simulator shown previously used Smalltalk windows for displaying instrument values
and the horizon. Each window has as its content a Smalltalk object; they can be moved, stretched,
overlapped, and edited.

One of our goals was not to be worse than paper in any important way. The Dynabook is flexible to

the point of allowing its owner to describe just how knowledge is to be viewed, including tailor-made
printing quality fonts. Any character font can be described as a matrix of black and white dots. The
corners of the dots will not be perceived at normal viewing distance if the light level from the display is
high enough and the resolution is sufficient. Here we see a font in the process of being created and
displays of text in some of the fonts which are available.

-

4 T BT T

S i

he tox @ x y size tilt

Hispews

\‘“i;c--x -y e 2500,
6 size = 50,

i tilt e O
" SELF draw
. ~draws
Seipcint x y.

(2 tarn tilt

syure size.

]
Sumdriws

1. white.
SELF driw.
& thicks
L LI

(SELF undraw.
w filt e iy e 2,
SELE, dryw
SGrews
F undraw.

- sice e size ¢ 1.

SELF drswnt

--'-I=ﬂ T f

e it

ent e,
Qli"‘i 2 L X;'s'!

quare

s¢hede{cntchn?

Qached = fontchurl

Qactedmlontchnt

e q

ELai i
frat-g o afe wings v
TARA &1, £ T 7F FF5)
st ave fo afz at @if sw563F FTH D
T 3 AreT 7S W o WS Al g 51 A a6 R
t1 awla, agt @ aswr Ry SERE ol

A o, mar weng At 3 AT i v

ST HPW T A A S A A g |
FEAT?

gt

N

RESET

-
There once was a & who got lost ?
H

He did not know whether to g0 Eh or ﬁ .

He asked a :‘5 he saw sittiag on a 'g -
The % promptly stung the ::_' on the ::f's
nose . @uch, said the ;_‘ . The %
said *T am sorry—-I forgot myself. Close
one P and toot your &7, raudtre F .
' The way to go, d: or :_\,, 13 the way you

will see.’ So the 3 closed cre ® |

DATE 12-JUN-75 10:19:38

Filing and Editing

Every description in the Dynabook can be retrieved, shown, and edited in a completely uniform
way. Each class of objects (text, pictures, fonts, movies, choruses) responds to the message
show by invoking its own method for showing itself on the screen. The displayed objects actively
watch for the the cursor to enter their boundaries, and if it does, the message edit is sent to the
object. In a manner similar to the show message, each class of objects can respond to the message
edit in its own appropriate fashion.

If the object is text, an easy to use and modify 'modeless’ text editor with automatic justification is
invoked. Drawings and paintings have their own simple editors, as do musical scores, timbres, etec. A
document is simply a collection of related objects which may be automatically crossfiled by

contents including title, author, date range, selected keys, and anything else the owner desires. A ncw
class of objects may be added to a document in a completely independent fashion because no part of the
system has to be informed; instead, the new class simply adopts the conventional protocol of being able
to respond to the standard messages show, hascursor, edit with useful local methods for

achieving these goals.

The current version of this system is able to automatically crossfile tens of thousands of objects
including textual documents indexed by content, the Smalltalk system itself, personal records,

books, and so on. As shown in the examples, retrieval is done by simply filling in as much as is known
about the document into a blank template; the system will retrieve a collection of documents which fit
the description.

ml s

witbor 4 Alo Koy

vef i bedere date 08 Jun 1275
ety

ol x

ntle 5 tith &

by i anler 4y Al Koy

Bl i el b fore date £ Jane £27%
thstract § et i

Frvuy beve

A Blank Document Class Template Filling in Identity Fields (any known combination, will do),
Invoking a Menu and Asking for a Retrieve

title % 11w Ditevam Dymnbock

nthor % Al Koy

asct 4 date 2 Jo FO75

shstract 4 This s 1 deseription of the

title 5 The Toterim Dywbock

wthar § Al Ky X Intcrim Dyinbeek voscen by s anive ey
ascd fdate 2 Jun 1975 f the systam

abstract § [his is 1 description of the keys & Dymabeek, Staddane Copgerater,
Interim Dynaback s seen by 3 asive user miid

f the systeom oot 888

keys § Dymibeck, Stadilane Computer,
mini

The Document is Found A Menu is Invoked at Bottom Margin
Reversed Text Indicates Submerged Parts We want to make the template wider

title % [he Interim Dylicck

ather § Al Kay

et § date 9 Jun 1975

abstract § This is 4 description o the

i?lﬁfeu;ly?li:::b«& 13 seen by 1 niaive user) mive wer of e 3ystem
. “ . keys § Dysnbeck, Stnehilone Canpatter, inini

keys § Dynabeck, Stindalene Computer, » = gl ‘ |

mid - P : inro 8§ § 8. & . NEN

title § 1 Do fnterim Dywhock l'
auther 4 Alm Kay
wsef § date 9 Jun 1975 ||
abstract § This is » deseription of the Iuterint Dynibeek as seen by ,

Showing the Document Where to Put The Right Margin The Widened Document

Note Automatic Justification

mprove

DATE 12-JUN-75 10:19:38

Tile 7 The Taterim Dynibock
withar § Al Kay titke § TTe Tnterin Dynabeck
ik §edate ¥ Tun 1975) sitbee K Al Koy
st 4 This s 1 description of the Interim Dynabock as seen by ek % obyte @ Jun 1975 .
3 maive user of the system o abstract § This t5 0 description of the Intorim Dymbeck as seen by ||
keys i Dymback, Standidone Computer, ming) nive wser ¢ the system l.
Intrc § keys § Dymibeck, Stnehik ne Compter, mini
The Interim Dymibcck iv 0 campletely sell-centained system, Intre & ’ ’
d"“ﬂ“ﬁ""""_’[_“"h; Iv lr“!: ‘i":;'l‘"il(‘gs sl!l\l:ill b(‘;‘:‘[:‘:’;[,}(’;\‘:;’\ The Interim I)yl'nllvulv i ((‘mp{--l.- ly :t'll';(nl:.linc'l system,
: < the nger - ‘ X s T !
;')e(pl:\‘;?:'l;l:i“; dis(kln‘:c ;:u nly' (lwxutl‘lil:ling ibe l;l 15_0(’ n_ige-equ:ivx.lenls :l;::frl:;llu:lx:’ 'I‘(N lll(uj usx'-:'(,“i.! s ‘-ll"." m;-:‘ul ml::‘ll be x":‘x::l:ﬂl':(l;ll::;
of manipubible sterger connected te 3 very crisp “Fh resc luticn B be iserted 3 disk memory coptinigfabout 150¢ Yagc-cqu.ivdenu
and W display ¢ s lower rr!dlﬂ'l(ll l_}_l_?.h'lllllll_‘_y_ff_('l‘ 'iBPhY} 144 numruhl-lc sterge) camected s very crisp high resclaticn B
- T md W displiy or 1 o wer resclation high-gquality ccler display
: - r e Py S k=41 atat B ot A
— T N — r
i . r’ l . T 1. = mea
| i | Fic | |
displiy | cpt Mem | 1 Disk | | |) ' ,
] | display cpr Mem) Disk |
_iL L I Keybeard] D o ket
; Keyheard o
§ Otker input devices inclide 1 standard typewriter kryb'(-xrd, 2 — e P
‘cherd’ keybaard ifor sending simuttinecus signabsy, 2 “meuse § Other input devices include 3 stusdard typewriter keybeard, 2
1which i.nrms positicn 15 it i3 mcved abcut en the tabley, and ‘cherd” kevbeard or sending sinnttinecws signalsi, 3 ‘mcuse’
varieties ol crgan-like keybeards for playing music. 1whick inputs pesition as it is mcved abcuat on the tabler, wd
Virietics (7(rgm-l.ikr kevbeards for phiving music.
4
R 2 . S 4
f° o — 2
1
cuse
Cusc
1 . g
§ The meuse assigns the above values tc its butteus which dlews
them t¢ be tested simultanecasly. § The wcuse assigns the ibove values te its buttens which allcws
them tc be tested simudtanecusly.
Opening up the Submerged Parts Grabbing Text by
Drawing Through It
i The Taterin Dywdeck
- - WE tule i " y
s date 22 Juw 175 . bt T s s vipticn f the Tt
hstrac l"k lrlli; 1i;~. ';;.."’ |I'Iilyti< n of the foterilg Dymibeck s seen by shate mx“. i by i "Ip on * dnteritu Bynibock as seen by
1 nHve tse 3 ste o . -
kevs § Dymbeck, Stanhilone Canputer, mini keys § Dymhcck, Stasdidene Computor, wini
ot H ’ futre §
nire The i i :
The Interim Dymibeck is 1 campletely self=centiined system, ‘;hc..!m;nm Dymbeck is completdy sell~contained system,
designed-as-1~whede fraun simalticas md kionan factars e stgner mas=a-whele i neosimubtions X wd lionan facters
experiments, Te the aser, it ! > 1 amall be x tin whick (n gxperiments. To the wser, it appews w1 sinall bex tin which can
bepiu:.rrk-d ;'lisk ey "V Cc nining 1 ke 1500 1ge —equiv lents be uuc_rlu] 1 disk meanery cont sinig beut 1500 b 1 —eguivalents
of muipilible stersge 1 e Canected f 1 very crisp Yn b rescluticn B dr;“\;l,ll dable stor e o mnected 11 very orisp high reschaicn B
md W displiy or 1 lower resduation Ligh-guiity ((F(r display. wd W display or 1 lcwer reschtion ""Kl'-‘ql“m!’f(j‘ displav,
A 3

- v . ¥ L - S T Y T . JK 2

displiy €D Mem Disk displiy (P Mem Disk |

o ’_‘AVKv:yln(“ . i v -

. . . Cosri Otber inprat de vice s e Ted [- R .

" de e es Iade 3 staindard 1vpewriter kewboard, 2 5 5 P <8 cdude 1 standard typewriter keybeard, 1
'?P?:'ld'rklc“\‘r)l:: u'tll:il 3 ”;:n'f’h;lg‘ :in:::llr“nn-c'ul;csigudx v, 3 ‘mause’ cher keyboard ey sending simulturecs sigmilsy, 1 e
Iwhick inputs pe Siticn 16 it 8 mcved abcut o the tables, wnd 'w_}}“!" “‘Y‘"-‘ peiition as it s meved abao on the tabler, and

hkee b e ’ ViR mnsic. Varictics «f crgn-like keyboards tor pliving nusic.
varictizs ¢f crgan-hke keybourds for pliving ying
4 1;

- 2

.t o 1 |

E(us e
« t f
]) . § The mcuse assigus the abe al i i
N f i . its buttens which allews i e abcve values te its buttens which allews
Do e et gy e et bt them to be tested simudtunecsly.

Replacement is Automatic
(without command)

Grabbing More

o 3

/ DATE 12-JUN-75 10:19:38

ke i 1o Tatertns Dyl k

withar § Al Kay

st § date & Jun 1275

hstrwt iy This is 0 deseription of the tterim Dynibeck 1 seen by
Danuve mser of the systom

keys § Dymbock, Stindidone Canputer , mini

latre %

The Interim Dymbeck is 1 campletely sell~contiined svstem
designed-iz-a-whele fram somditicns wd bwuan facters
experiments. o the uzer, it sppews as 1sunll box tin which can
beincerted s disk meincry contuning bat $5080 pge-equiv adents
b mnipidable stcr ige s ccmected 1 very orisp high resclnicn B

‘f{ _i:phy ar dower resclution bigh=quaity ccler disphiy.

PAGE 14

tile § The Tuterim Thymibeck

auther 4 Al Koy

1ixcd 4 date 9 Jun 1975

abstract § This iy 1 description of the hiterim Dynabock 1 secu by
asnive nser of the system

keys § Dymbeck, Stabilone Computer, suing

Intre j

The Interim Dymibeck is 1 completely sell-contained system,
designed=is-a-whcle fran simdtiens ad - R Freters
experiments. Te the user, it appears az a small box rin whick e
be izerted 1 disk memery contaming dhont 1560 Y\ge-equivdcms
of manipubible sterages comnected ta very crisp bigh rescluticu 8
and W display o 1 lewer rescluticn high-guality ccler display.

3

L TR 2 JK 20
L i .
displiy Cpt Mem ! Disk

_— i TKeybard”
ELOCK LINE ARROW TEXT
e ve g <lem waws signalsy,

rarictics o} crgan-like keybeards fer playing music.

U3

i The mcuse assigns the sheve viues te its buttens whick sllcws

sem t¢ be tested simtaccusly.

1 typewriter keyheard, a
oo m . 3 nkwe’
whic b LII}JlﬂS pesiticn as it s mcved abcut ¢ the tables, and

1

1
i'ﬁ-'»ph}'!
b }

BLOCK LINE FYUTX7R TEXT
meve cent K

virieties ¢

4
2
1

CUuse

 BANE 2
(! !

S

(which inputs pcsiticn s it i3 mcved abcut <n the tibles,
¥(rgu|-l.ikc keybcards for pliying music.

§ The imncase assigns the above vilues tc its buttens which allews
them te be tested sinndtanecasly.

3

M | Disk .
(Keybard | [

1 typewriter keybeard, 2
recus signilsy, 2 ‘incuse

|
|
]

Moving Into The First Drawing

Changing The Arrow

ftle & 1Tie Interun Dywsback

aather § Al Kay

ascd § date 2 Jum 1975

ahstract § This is o doseription < the fanterim Dyamabeck s seen by
1 miive wser of the systam

keys & Dymbeck, Stanbilene Compater, wini

Intre §

The Interin Dymibeck iz 1 conpletdy self-contiined system,
designed-as—1-whe bl fran simmditions ol hanan hctors
experiments, T the uzer, it appe s as 1 saull boxorin whick cn
be inserted 3 disk menr ry ccotaining thont 1500 pige-cquivilents
of nuni{tulﬂ‘lc ster e s connected te s very orisp bigh resclution B

mnd W displiy <r 2 Yo wer rescluticn high=qwlity ccder display.
T .)
; . } . 1
display ™™ cpU Mem ' . Disk
| Koy i
— Taes . -

BLOCK LINE ARROW TEXT 1 typewriter kevbewd, 2

meve RN N wcus signalss, 1 ‘meuse’
twhick inpis positicn as it i3 mcved abaunt on the tabler, and
virieties ¢f crgun-like keybaards far phiying music.

4
-2
1

Cuse

§ The mcuse assigns the above vilues (@ its buttens whick allows
them te be tested simultinecusly.

Now The Arrow Points To The CPU Box

LA kel

pears 9-JUN-75 16:13:10 PAGE 15

Curves

variable width track of colored ink. A turtle has a location, a direction, a
tip-state{ up or down), an ink-color, a boundary (which clips it), and any other
properties the owner might like. A turtle can he turned a relative angle, can go &
distance in its direction, can goto a location, and so on.

A powerful idea (borrowed from LOGO) is that the turtle is coordinate free, in that going

and turning are completely relative to the turtie’s current state. The turtle thus

lives in curveworld. A straight line has O-curvature, a circle has constant-curvature, linearly
changing curvature generates beautiful smooth curves. This may be contrasted with the cartesian
world in which O generates 0, a ramp generates a line, and a quadratic is required for circles and

Smalltalk has a class of turtles which can crawl about on the screen leaving (or not) a
I
|
simple curves. ‘

DATE 12-JUN-75 10:19:38 PAGE 16

Animation and DMusic

Animation, music, and programming can be thought of as different sensory views of dynamic
processes. Their common structural form is apparent in Smalltalk, which provides a neutral
framework for expressing these ideas. All of the systems are equally controllable by 'hand’ or by
program; drawing/painting are directed by the mouse or with curve and area programs; musical
events are initiated with a piano-like keyboard or from a dynamic 'score’. Timbres are the 'paint' of
musical expression as they contain the quality and mood which different instruments bring to an
orchestration.

A Picture Animation System Programmed by Animators

Several professional animators visited us with a long-held dream for a 'magic-slate’ which would
allow them to create high-quality animations by simple (and literally) "waving their hands". They
wanted to paint pictures into an already running animation in order to take maximum advantage
of the 'phi’ effect (which causes the main action of animation to be the change between

frames).

DATE 12-JUN-75 10:19:38

An Audio Animation System Programmed by Musicians

Animation can be considered to be the coordinated parallel control through time of visual images.
Likewise, a system for representing and controlling musical images can be imagined which has very

strong analogies to the visual world. Music is the design and control of tone images (pitch and duration
changes) which can be painted different colors (timbre changes); it has synchronization

and coordination, and a very close relationship between audio and spatial visualization.

Timbre Synthesis

We use several methods for real-time production of high-guality timbres; both allow arbitrary
transients, many independent parallel voices, and are completely produced by programs: no special
hardware is used. The most interesting of these was developed [19,20] and allows independent dynamic
control of the spectrum, the frequency, the amplitude, and the particular collection of partials which
will be heard.

'
i
- S B 3 AN . . T ;'_'LI —
\) - | \
[T) I Y A
| S A . L 1
(. -) Y Y
{ s \) 7 ! s
B n - i, i)
[R ' |
R — R B B RS S S
Hew Editing -=>>> Vclwne . Now Editing ==>>> R tic Change :
Velume Mcdaation Freguency Ratic Redraw Cuit Vctume Mcdulstion Frogiency Ratic Redraw Quait
Ml is dctted MI is slctted
An instance of a timbre class showing Now the ratio of modulation is changed to emphasize
the amplitude change and spectral only the odd harmonics: producing a 'clarinet’
change (dotted lines) over several seconds

of time. The area between the vertical lines
will be repeated until the note ceases.

1]
‘,_ 7 Sl VLY SR Ak G VN U GRNRY Al Gd .,_&,___

=
I

New Editing =->5>> Frequency Devition X

Vcluue Mohiditicn Fregquewry Ratic Redrw (it
Ml is detied

Now a frequency deviation is drawn to

Here is what the (somewhat strange looking but
produce an initial portamento followed good sounding) wave looks like on a 'scope!
by a sharp vibrato.
/I‘.‘__-'__ B T 2l VOl Vel VL VLY 2 W oL 9% U e
|) V- s
[l
;'J/ B ’ \ -7 -
i y
TR
P S R e el
P . How Editing =->>> Froquency Deviaticn
Now Editing -->>> Mcdulation hidex 2 f e i . ‘i
V¢hone Mé}llllllli(/n f’l'l'l‘lllt'll(y l(hli(Redaw Cuit n(‘l}nxf;cuf.»:lluluhluu Freguency Ratic R‘B’w Cuit
MI is dctted is dette

We reach in and grab the spectrum control.

Here, the ratio of modulation is changed to emphasize
We want it to "bump’ in the beginning, and - all harmonic partials: producing a ‘trumpet’.
then gradually increase.

DATE 12-JUN-75 10:19:38

Score Capture and Editing 1: Dynamic Capture and Score Production.

This is a rausical score capture system written by a novice programmmer who is an experienced musician,
obtained by

The system produces a display of a conventicnal musical score directly from data
playing the music keyboard in real-time.

Playing it in.

9
b
3

W
»
11y

Ni®

X x x

i

The Captured Score

Score Capture and Editing 2: A Comprehensive Music Editor

Standard musical notation has a number of drawbacks: a large number of symbols must be
remembered, articulation can't easily be shown (without cluttering with rests), precise duration
control is very tedious to notate, the staff is biased towards certain keys, and it is hard for kids to see
that similar sounding chords are really the same. Accordingly, most of our music editing is done in
terms of a simpler notation which uses length to show duration.

L

\

]

T2 Dur atie n Streteh v sk Sync Add
Hear Bac)t‘!lp Brginning (it Capy Shilt ov
A played-in score.
—
X —
—
—
—
- - - - —
- - ‘—

72 Dur aticn Stretck: Break Sync Add
Hewr Backiy, Begining Cut Copy Shift ev

Playing test notes with mouse

— PO —
- — { Cm—
.......... —————
it R ST TITING PR U3 B TR 4 f;ynl"r‘\'_lll
Hear Bk Beginning fuit € cpv Shilt ey
We want to change a note.
LY —
————
FRL D aticw St e} e dk Svne Add
Hear bk b glinmung £ oy Shiltew

This is the one!

= |

= |

| =

e
LT

R Do ation Steetch break Svie Add
Hear Backup Beginning Cuit Copy Shift - v

It's grabbed.

3732 Dur ation Stretch Break Sync A%
Hear Backup Beginning Cuit Ccpy Shift ev

Gral, another!

DATE 12-JUN-75 10:19:38

742 Duraticn Stretch Break Syne Add
Hesr Backup Beginning (uit Ccpy Shift ev

Move it to 'd'.

Pitch Duraticn JITYAR Break Sync Add
Hear Backup Begimuing Cuit Ccpy Shift ev
wee <~ cCntrct ~=l== expand =7>

'Slice’ the score, and...

A2 Duraticn Stretch Bre ik Sync Add
Hear Backup Beginning Guit Ccpy Shilt ¢v

There are two 'thirds' in chord.

Pitch Duraticn 738 Break Svic Add
Hear Backup Beginning (uit Ccpy Shift ev
ees == centract ~=i-- cxp-lndp -—>

stretch it to there, so ...

These systems have a number of benefits for both children and adults:

PAGE 19

732 Duraticn Stretck Breik Sync Add X
Hear Backup Beginning (uit Ccpy Shift ev

Double the octave

g

7733 Duration Stretch Break Sync Add
Hear Backup Beginning Quit Cepy Shift ev

we get ritard.

The semantics are easy to understand since they intentionally are anthropomorphisms from the real
world. The strong similarities between the audio and visual worlds, and between the arts and the
sciences, are emphasized because a single vernacular which actually works in both worlds is used

for description.

Chiidren can gain skill and coordination by learning how to draw and play. The systems will show and
replay for them what they just tried, then allow them to compare their efforts to a more expert model,
much in the manner of tennis or skiing instruction.

The arts and skills of composing images changing in time can be learned in parallel with the acquisition
of muscular expertise since much of the 'dirty work' is automated. This is not a prosthetic but an

amplifier.

DATE 12-JUN-75 10:19:38 PAGE 9

Our Experience With Naive Users

Smalltalk users have included children, ages 6 -15, and adults, both computer sophisticates and
noncomputer specialists. Although we have not followed enough children long encugh to determine
whether their experience with Smalltalk has qualitatively changed their ways of viewing and
thinking about the world, we have reached a number of subjective conclusions from our experience.

First and foremost, the ability to program is an inherent legacy of humankind. Everyone can do it.

Using Radia Perlman's Button Box[14] we have seen children of three and four years old

consciously plan and 'write' symbolic procedures for drawing pictures. Eight year olds do simulations

of moon landings, ten year olds do their own SPACEWAR, twelve year olds design and implement entire
systems for illustration, choreography, and simulation. One of our 15 year olds has recently finished

an interactive flight simulator of fair complexity (it uses an aerodynamic model for moving from one
state to the next). Secretaries have successfully planned and added new 'features' to editing and
retrieval systems, artists, who have tried and failed in the past (with BASIC, etc.), have been able to
translate some of their yearnings into running simulations of their ideas.

It is only remarkable that some people find this remarkable.

Programming is the act of communicating descriptions of processes symbolically, the very same act as
with ‘natural’ language. We should be able to guess confidently that most of the problems encountered
will be those of a linguistic nature (e.g., as with learning French) rather than being due to
intellectual problems on the part of the learner.

Second, we have seen a clear separation between the skills associated with programming and debugging,
and those having to do with design.

An analogy: Smalltalk can be likened to an extensible Tinker Toy (Thinker Toy?) set. It contains a few
simple ideas, some already built struts and connectors, and some moldable plastic for making
unanticipated building blocks; it has been obvious to all of our users as to how these may be

used to build simple desired structures. Nor have they had any trouble with the mechanics of

molding new structural elements (this is easy and automatic in Smalltalk).

We can imagine children enjoying themselves immensely with a Tinker Toy set (as indeed they do),
and, in the process, they learn valuable, more general ideas about how things connect together and can
be manipulated in the 3-D world.

Children appear to have the same kind of experience in the 'Thought-D' world provided by Smalltalk.

An adult structural designer may use his Tinker Toy set to test out a new idea for an arched span for a
new kind of bridge. The designer, after a few trials, will successfully span a large area with his Tinker
Toy model, and there will be no lack of motivation for extending the Tinker Toy set in the process.

Computer systems designers have found Smalltalk to be a exceedingly easy to use, friendly way to bring
their (sometimes very complex) ideas to life.

Suppose now that we bring an adult to the Tinker Toy set. After successfully making a few 'kid-type’
models the adult decides to make a huge bridge. A massive failure results, and we can confidently
assign the reason not to any lack of 'intelligence’ on the part of the adult but rather to an innocence of
design knowledge having to dc with large structures. After all, it took a collection of the ‘smartest’
designers and builders more than 5000 years to invent the catenary arch and buttress ~-- ideas any
child can read about and understand today.

'Nonprogramming’ adults have no trouble programming in Smalltalk. They do run into dif ficulty
when they attempt projects whoese structure they really don't understand in any terms.

This parable illustrates one of the leading red-herrings concerning the cult of intellignce in current
pedagogical thought: an incredible confusion between performance, skill, and 'innate ability'.

Our method for teaching children and adults about programming, coupled with Smalltalk’s simple and
very neutral basis for describing dynamic situations, has eliininated many of the usual 'linguistic’
problems having to do with vocabulary, place-holding, abstraction, grammar, etc., and has allowed us
to get closer to the 'real problems' which concern themselves with the kind of visualizations,
structures and skills the fledgling designer brings to this new area.

All of this suggests that the primary goal of a teacher (after learning to listen) is to find ways
to help learners develop in their heads a good set of methods centered about the understanding
of existing designs and the creation of new ones.

DATE 12-JUN-75 10:19:38 PAGE 21

It will be very difficult, and also rather unesthetic, to develop a prosthetic which attempts to
unierstand explanations and descriptions given by people who do not really understand the things they
are trying to describe.

It seems much more beautiful to show that people can be amazingly more effective at dealing with
their world if they learn some powerful techniques and skills (perhaps with the aid of media) for
visualizing, part-arnd-whole-ing, planning, symbolizing, manipulating, and avoiding debugging.

Some Principles We Use in Teaching

These ideas are fou..< in many places and many cultures. We came to them from our own experiences,
the Suzuki violin msthod, O. K. Moore, Piaget, Furth, Bruner, Minsky, Papert, and others.

1. Listen to the student.

Since we believe that teaching involves helping a student adapt his knowledge structures to a new
situation, we can guarantee ourselves (not to mention the student) an unpleasant journey if we don't
try to understand these gossamer schema at the outset.

Many of the current ways that things are done in Smalltalk come directly from listening
to the kids. Smalltalk, as an 'extensible’ system, can easily 'be’ any kind of tool that we
wish. We ourselves have remolded it several times.

2. Never teach anything which has to be unlearned later.

In our experience, humans are very poor at unlearning any kind of skill, whether it be muscular or
mental. This principle is well understood by every teacher of music. "Tempting analogies' which later
come back to haunt are especially to be avoided.

We teach 'straight' Smalltalk, the very same system which adults learn. The very first
examples and methods to which the kids are exposed resemble strongly the most
sophisticated adult systems.

3. Never pace a student in a way that will require future remediation.

Principle 2. basically says: don't simplify to the point of a lie; Principle 3. is a corollary of this which
states: don't put the student into a situation where he will feel dumb and inept because a good enough
foundation has not yet been laid. Most kids do not understand the distinctions between skill, structure,
and intelligence any better than adults do and are apt to feel stupid rather than unskilled

in new situations.

4. Heok on to existing fruitful structures when possible; if unfruitful concepts exist, don t unteach
them, rather supply completely fresh orthogonal concepts.

Most kids know about dictionaries and looking up the meaning of a word. The meaning can be an
explanation of a passive rclationship or a dynamic act. In fact, every idea in mathematics and in
programming can be easily explained in dictionary oriented terms alone; this is a fruitful, useful
concept, and it makes sense to use it with kids.

Many other 'nmatural language’ linguistic structures are ultimately deadly and we avotd them.
Fxamples are: 'nouns’, 'verbs', 'pronouns’, inflections, and their counterparts in most programming
languages: data structures, functlons and control structures variables, tagging type to names, ete.
Instead, we immediately give children a running example whxch duectly exhibits the more fruitful
notions of states-in-process communicating-with-messages found in Smalltalk.

5. Do not look over the student's shoulder.

Aside from the obvious reason of avoiding 'putting the student under the gun', there is also a great
difference between performing and creating. In music, this is known as the difference

between improvising and composing (and a greater difference could hardly be found, as any
rmusician will attest). We are much more interested in the design-oriented and planning processes
associated with unhurried goal-directed reflection than in the more shallow though flashy effects
obtained by virtuoso 'thinking on one's feet'.

We capture every action which a student makes and can replay their session for our eyes later. We tell
every student that we do this, but the process cf capture is completely invisible and thus rapidly

DATE 12-JUN-75 10:19:38 PAGE 22

ignored.
6. Teach and Show Multiple Perspectives of Situations.

A typical problem with fledgling designers of all ages is a strong tendency to commit all of their short
term mermnory to a given perspective of a situation. If it happens to be an unfruitful view it may be very
difficult for them to 'bail out’ or even tell that it is unproductive. We feel that the Piagetian example
of the tilted glass is much more the result of lack of practice in multiple viewing than the result of
physiological immaturity.

One of the striking things about design methodology is that 'simultaneous’ use of a perspective and
its dual is remarkably more rewarding than using either separately.

A very global example is the duality of wholes~as-collections-of-parts found in Western science
and wholes-as-wholes found in Eastern philosophic thought.

The former has an important dualistic aspect itself: analytic (or top-down) vs. synthetic

(or bottom-up); both of these emphasize differences and boundaries: a corpuscular

theory. The Eastern philosophy emphasizes samenesses and connection: a field

theory. As more complex systems are studied, the apparent differences between the two schools of
thought blur in the underlying sameness that characterizes duals.

The human nervous svstem produces reactions in both directions:

| ™
7

'e
A Square 3_.

A 'lincar’ theory, useful for simple models such as walls macde trom bricks, 1alls down badiy 1n niore
interesting domains. A typical reaction of those whose prime methodolegy is centered about the linear

model is to attempt to 'patch’ (or add epicycles to) the description rather than to recenter their
inner vision.

A linear theory of the Taj Mahal is that the bricks were brought to the clearing and added together
until the building appeared! It is very hard to see how the design process for the Taj Mahal (or of a
human embryo) can be fruitfully characterized as a collection of patches on simple assembly notions.

Relativistic philosophy, on the other hand, is much more a grand combination of the two points of
view: Every thing is every other thing because they are just local geometric states of the 'same’
space, and conversely, there is a both a field lag and an attenuation associated with relative
distances and speeds which makes the concepts of objects, and parts reasonable to consider.

We try, partly in the spirit of principle 2, to show children about both aspects of design thought right
from the very beginning of their experience with Smalltalk.

mprove

=

DATE 12-JUN-75 10:19:38 PAGE 23

Humans and Media

'Devices’ which variously store, retrieve, or manipulate knowledge in the form of messages
embedded in a medium have been in existence for thousands of years. People use them to
communicate ideas and esthetic feelings both to others and back to themselves. Although
thinking goes on in one’s head, external media serve to materialize thoughts and, through feedback,
augment the actual paths which thinking follows. Methcds discovered in one medium frequently
provide powerful metaphors which contribute new perspectives for notions in other media.

Every message is a simulation of some idea. It may be representational or abstract, isolated or in
context, static or dynamic. The particular essence of a medium is very dependent on the way
messages are embedded, changed, and viewed.

Computers were originally designed to do arithmetic computation; a powerful idea was the notion of
controlling the computation from a description of the algorithm held in a writable store. Even
more powerful is this corollary:

The content of the computer is descriptions of processes; the ability of
computers to simulate the details of any descriptive model means that the computer,
viewed as a medium itself, can be all other media if the embedding and viewing
methods are sufficiently well provided.

This 'pocket universe' (a metaphor we like) needs an epistemology if not a metaphysics.
Some Observations Which Led To Smalltalk

The basic principle of recursive design is: make the parts have the same power and capabilities
as the whole.

The 'whole' is a digital computer, a black-box to which we send messages and receive
replies, which contains state-in-process.

From the outside, we don’t know very much about the methods which the black box uscs to send back
replies. When we request:

sine 30

we don't know whether the reply is computed by table-lookup, Chebyshev approximation, a summed
series, or a combination of these. And, in fact, we don't really care, as long as the expected reply comes
back consistantly, quickly, and without interfering with other things we may also be doing.

The principle of separating desire (a semantic notion) from method (a pragmatic notion) is
central to Smalltalk.

It is interesting to note that none of the parts of most programming languages, 'date
structures’, 'functions’, and 'control structures' have the same power as the whole; instead
they are dilutions of the idea of a computer.

The Five Simple Ideas of Smalltalk

1. There are only objects.

The numbers 3, 4.5, 1.245e14 are each objects; so are the words: this,

identifier, sine, file34; so is the collection: (this is a collection of words); and the literal

piece of text: 'this is ¢ piece of text’.

2. Each object has memory.

In fact, each object is in charge of its knowledge, how it is represented, and how it may be used. Each
object has some way to distinguish itself from other objects. For instance, the object representing the
number 3 might have in its memory the magnitude '3’ stored in some fashion; the object

representing the number 4.5 could use the same or a different technique to remember the

magnitude '4.5".

3. Objects communicate with each other by sending and receiving messages.

The first three ideas constitute a recursion on the notion of a computer. Idea (3.) actually includes idea
(2.) but both have been included for clarity.

DATE 12-JUN-75 10:19:38 PAGE 24

In Smalltalk, a message is sent to an object by first stating the object, then the message.
3 sign

sends to the object '3', a message consisting of the word 'sign’. The response to a message is entirely up
to the receiver. We might hope that a '+' will be sent back consistantly from each number of positive
magnitude.

A 'powerful idea’ is the notion of grouping objects which have similar properties into classes so
that they may be discussed in general. In Smalltalk we currently find the additional two ideas:

4. Every object belengs to a class.

A class is thus an object (from 1.); there also must be a class: class (from 4.). 'Obvious' classes
include numbers, words, collections, files, text. More exotic classes include font characters,
pictures, pens, sets, paragraphs, windows, docurnents, timbres, voices, choruses, and of course,
class class, whose miembers contain the definitions of numbers, words, and so on.

Part of the memory of each object in Smalltalk is the knowledge of its class membership.

5. A class is the collection of receivers for legal messages to objects in the class, coupled with
methods for producing a reply.

There are many ways to accomplish idea 5. We have tried several(3,8,9]. Our current approach
has a minimum of mystery and requires a minimum of faith in order to understand and use classes.

To define a class description, we use the notion of a dictionary containing entries, each one of which is a
detector and replier for a particular message. A class description is thus just one of the
many kinds of documents handled by the information system described previously.

An entry in the class description of number might be:

q‘3{3{‘:5’"-#(Self(O_-,[‘l'r)R 4)

which means,

If the [then {if the is less then } return | a otherwise {a
you literal current than to the literal| return to iteral
see word member zero sende plus the sender] minus
of number
« | sign V> (] Seif Vcolyaslen]+ | # e)

Children and Smalltalk

Our basic approach to teaching Smalltalk to both adults and children is to show them a simple,
running example of a Smalltalk class and the objects which belong to “t. After they 'play’ with it for a
while, we get them to 'guess' the class definition, and finally they add a new feature to the
description. In the process of editing an already running program, the new users learn quite a

few things about the form of a description which we would otherwise have to explain in a

mysterious manner.

First we get them to type:

GFjoe « box

A square appears on the screen. We say: "You've just made a box called ‘joe' ".
Now they try:

Jjoe grow 30

and the box 'joe' grows accordingly. We say: "You've just sent a message to 'joe’ that it understands,
and it responded accordingly”.

joe turn 45

DATE 12-JUN-75 10:19:38

This is another message that "joe' understands.

eachtime (joe turn 25)

PAGE 25

Now the student has made a simple 'movie’ which can be terminated via the 'escape’ key.

G=jill « box

Another square appears on the screen.
jill grow -10

‘111" becomes smaller.

jill turn 50

[

‘Jill' turns just as 'joe' did. Evidently 'jill' and 'joe' can receive similar messages and produce similar

responses.

Jillis ?
box

'jill' sends back the answer ‘box' when asked what kind of object she represents.

Jjoeis ?
box

So does 'joe'.

eachtime : joe turn 25. jill turn - 11.

produces a two object animation with a limited plot.

Now we get the children to 'guess’ what the general description of the class 'box' might look like.

They have secn five example transactions: make-a-new-one, grow, turn, draw, undraw, each

invokes a different set of actions. Since we have been using the word 'message’ it is not difficult for the
children to 'guess’ that there will be at least five sections to 'box’, each dealing with a particular
action. The idea of 'locking' at the message to see what's there is introduced. Finally, we ask them to

type:
show box
to see what the description of 'box’ really looks like:
Gbox « class : size tilt positionleft positiondown
isnew > (G positionleft ¢ 300.
G positiondown « 100.
GFtilt « 0.
GFsize « 50.
SELF draw.
T SELF)

<$draw »> (® penup

goto positionleft positiondown

turn tilt
pendn.
do 4 (® go size turn 90))

“undraw » (&'s ink ¢ white.
SELF draw.
&'s ink € black.

“fgrow > (SELF undraw.
GPsize ¢ size + U
SELF draw)

“turn o> (SELF undraw.

properties of a box

initial position

initial position

initial heading

initial size

cause new object to appear on screen
send back our new object to sender

tell @ to pick the pen up (no marks)
travel to the new position

turn to the heading for this box

put the pen down (to make marks)

draw a square in new orientation

turn turtle's ink to white
draw with white to erase shape
reset ink back to black

erase ourselves at old position
increase size by value from message
redrvaw ourselves with new size

erase ourselves at old position

DATE 12-JUN-75 10:19:38 PAGE 26
Gtilt e tile + . increase tiit by value from message
SELF draw) . redraw ourselves with new tilt
)

shows the various messages that can be sent to any member of the class box.

The various iconic symbols were made up by the first group of children that we taught to program in
order to clarify important ideas in their minds.

& The kids prefered to use G to indicate a literal symbol since in its typical
use:

Gjoe

{meaning the literal symbol 'joe’ rather than what (or who) 'joe' may
stand for), the hand points directly at the symbol itself.

We might guess that:

GPjoe € box
means that we are sending the literal symbol 'joe' the message: « hox. What
happens is that "joe' looks up his meaning and changes it to the reply sent
back by 'box’ (which, of course, is a new instance of 'box').
means that the following symbols will be local properties of each created
object. In the 'class’ human, we might find the property 'eye-color'; each

instance of human would have a local value (say) 'blue’ or 'brown’.

isnew is a test to see if a new instance is to be created. This a much simpler and less
mysterious way to do initialization than with an infinite loop and 'pause’.

> will skip the next object if seen by ‘false'. i.e. 34 o> ('yesyes') will have
value 'yesyes'.

SELF since there are typically many instances, SELF stands for the one currently
receiving the message.

T replies back to the original 'sender' of the message.

¥ 'looks’ in the message to 'see' if a literal word is there. Its reply is true or
false allowing it to be tested with 's'.

a symbol which stands for one of the many available Smalltalk turtles.

0} this symbol means receive the value of the next set of things in the message.

Instead of trying to get the children to understand this definition in any crisp way, we tell them a
little bit about isnew, », SEL™, 1, «§, ®, B and almost nothing about G and ":'. Then we ask
them to see if they can imagine how they could get any box to move to some place on the screen.

They use grow and turn as models. Their first articulation of the new method is usually
very much like:

«fmove » (SELF undraw.
...something to change the position....
SELF draw)

They say:

If ourself sees the word 'move’ in the message, then we get ourself to undraw (because we are going
somewhere else), we do something to change our knowledge of where we are, then we redraw ourself
(just like in 'grow’' or 'move’).

Now they look closer at the names at the top of the description, the first two of which have already
been used for 'size’ and 'tilt". 'positionleft’ and 'positiondown’ look very hopeful (especially with
some hints from us). Now they are ready to understand ‘draw’ and the turtle (&J). They sec that the

DATE 12-JUN-75 10:19:38 ’ PAGE 21

turtle picks its pen up, goes to 'positionleft’ and 'positiondown’, then puts its pen down and draws a
square {they find out the latter by trying it themself).

It really looks as though they just need to change 'positionleft’ and 'postitiondown’ by receiving new
numbers from the message exactly analogous to the previous examples. They write:

<fmove » (SELF undraw.
GFpositionleft « W,
G positiondown « 0,
SELF draw)

Instead of getting them to learn about the editor at this point, we provide them with a simple class
which does the update called: addto. So they actually type:

addto box (%¥move » (SELF undraw.
GPpositionleft « [
positiondown € 0B,
SELF draw))

This works very nicely when they try:
joe move 400 100

We take as long as necessary to get to this point with the children (usually 1 or 2 sessions). Although
there is quite a strain on their short-term memories, the benefits are tremendous compared to more
atomic bottom-up approaches. From here there are many paths that can be followed:

We ask them to try:

mouse left
344

mouse down
112

and their abbreviations:

ml

344
md

112

These are the mouse locations expressed as 'left' and 'down’ offsets from the upper right hand corner
of the screen. They try:

joe move ml md

and 'joe' goes where they point! Many children spontaneously 'see' that they can use 'eachtime’ to do
these operations continuously:

eachtime (joe move ml md)

and 'joe' follows! Even more interesting, many see that they can 'paint’ if they just were to remove
the 'SELF undraw.’ line from their previous definition. They are now ready for the editor which
handles the programs in a structured way and automatically makes sure that parenthetic levels are
consistant. When this is done, they have made a controllable 'brush’' which can take on various sizes
and orientations (by doing 'grow’ and 'turn’). Moreover, they know that they can create a large
number of tailored brushes and give them names.

The power of classes and instances now starts to make itself felt.

Our children usually spend about 6 to 8 sessions exploring in this fruitful neighborhood. This is
important because our experience indicates that learning to program progresses in little leaps with
intervening 'plateaus’, where, for a while, it is difficult for the students to "see' new things. Then

they do and another leap takes place. This reminds us very much of the typical progression involved in
acquiring skill at playing music or sports. Since the plateau areas are very important, it is necessary

to make sure that there are plenty of fun things to do while the inner 'coordination’ is being built.
Otherwise, it is possible for boredom to s¢t in before enough skill is obtained to really make the new
area intrinsically interesting.

DATE 12-JUN-75 10:19:38 PAGE 28

The children typically will manipulate every part of the 'box' description. They change the 'shape’
routine to draw triangles and other polygons and thus learn about 'turtle geometry’ by the back door.
They may make the 'shape maker’' another class entirely and add another parameter, 'shape’, to the
box description.

After a while, rocket-ship and airplane shapes replace the polygons. New messages are added, like:
fly, bounce, open, close, and so on. They discover that they only have to continuously add some small
constant number to the position holders to get an animation with simple linear motion.

Everything, without exception, in Smalltalk is represented as active instances of classes, and,

the 'box’ class is an ‘archetype’ of most of the already existing Smalltalk classes. Numbers, the
turtle, dictionary structures, 'collection baskets’, schedulers, all look very much like 'box'. When

the children are ready to invent classes of their own, they have not only a bag of tricks but a fairly
comprehensive methodology for representing their own ideas.

We feel this is why they are able to handle many of the notions involved with systems design at such
an early age and comparitively low level of sophistication.

Artificial Languages vs. Automatic Programming

This paper is about Personal Computers for Personal Computing by noncomputer professionals of

all ages. We would characterize our approach to be that of providing very powerful means to express a
user's desires and methods through an artificial language rather than to supply a system for
automatic programmingl22], although the distinction between the two areas is not as crisp

as it might be.

Not too many years ago, FORTRAN and ALGOL, were hailed as "automatic programming’ systems
because they automated many nasty assembly code tasks, such as subroutines, arithinetic evaluation,
storage allocation, files, and input-output.

In this limited sense, Smalltalk is an 'automatic programming' language since it handles many more
of the background needs of a user than 'higher-level’ languages of the sixties. However, 'automatic
programming’ in the seventies has a different connotation which constrasts rather sharply with the
'artificial language' approach to building running programs.

Automatic Programming vs. Artificial Language
Sloppy (natural) discourse Clear (rather crisp) discourse
'Intelligence’: (quasi)-human model Simplicity, Consistancy, Generality
Knowledge of Problem Domain Knowledge about the nature of Description
Natural Language Semantics Model-Descriptive Semantics

(Nouns, Verbs, ...) (states-in-process, communication, ...)
Declarative Some imperative sequences

We like the latter, not only because it works, but because it is a 'convivial tool’' (in the sense of
Illich): the innards of a system such as Smalltalk are more available and non-~intimidating to the user
for perusal and modification than that of a Model T Ford in the 20's,

We don't like natural language programming and description very much because we feel that most
natural languages lack clarity and focus (they were after all invented to talk about farming and
cows).

A remarkable exception to this is Jong.gwo-huah or Mandarin Chinese, whose features and

signs are the most 'orthogonally’ organised of any human tongue. In the Indo-European sense of the
words, Chinese has no inflections, nouns, verbs, or prepositions. There is a remarkably small basic
vocabulary and a simple syntax of great expressive and metaphorical power.

In a progression starting with Sanskrit, to Latin, to the Romance Languages; English is more like
Chinese than any of them and becoming more so cvery century.

Conclusions

We feel that a promising future for human-human and human-machine communication will be the
developement of a simple human-oriented artificial language with great expressive power. It is needed
for the same reasons which brought forth mathematics (as an artificial language) in the 16-20
centuries: not only are there new ideas and ways of looking at them afoot in the world, but the old
frameworks debilitate their cxpression and communication.

DATE 12-JUN-75 10:19:38 § PAGE 29

Smalltalk is nowhere near what is needed; it shows just enough of what the future might be like to
motivate further designs.

Thanks

especially to Dan Ingalls who brought the ideas of Smalltalk to robust life, Adele Goldberg who
zestfully managed the kids and a thousand other things, Chris Jeffers 'properties person’
extraordinary (who alone knows where everything is), and to all the people in the L.earning Research
Group and elsewhere in PARC who worked hard on Smalltalk and the Interim Dynabook.

From the Learning Research Group
Permanent Staff

Adele Goldberg
Dan Ingalls
Chris Jeffers
Alan Kay
Diana Merry
John Shoch
Dick Shoup

Visitors

Ron Baecker

Dennis Burke (age 12)
Barbara Dcutsch

Marian Goldeen (age 13)
Susan Hammett (age 12)
Bruce Horn (age 15)
Tom Horsley

Lisa Jack (age 12)

Ted Kaehler

Kathy Mansficld (age 12)
Eric Martin

Steve Purcell

Dave Robson

Steve Saunders

Bob Shur

Dave Smith

Bonnie Tenenbaum
Steve Weyer

From Other Groups at PARC

Patrick Baudelaire
David Boggs
Bill Bowman
Larry Clark
Jim Cucinitti
Peter Deutsch
Bill English
Bob Flegal
Ralph Kimball
Bob Metcalfe
Ed McCreight
Mike Overton
Alvy Ray Smith
Bob Sproull
Larry Tesler
Chuck Thacker
Truett Thach

mprove

mprove

A

DATE 12-JUN-75 10:19:38 PAGE 30

References

[1] Kay, Alan, FLEX: an extensible simulation language which can be directly executed by
computer. Computer Science Note, September, 1967, University of Utah, Salt Lake City.

[2] --~===--~ , FLEX, a flexible extensible language. M.S. Thesis. Dept. Com. Sci., May 1968,
University of Utah.

[3] --------- » The Reactive Engine. Ph.D. Thesis. Dept. Com. Sci., Sept. 1969, University of
Utah

[4] --------- , A personal computer for children of all ages. Proceedings of the ACM National

Conference. August 1972, Boston.

(5} ---——----- » A dynamic medium for creative thought. Proceeding of the National Council of
Teachers of English Conf. November 1972, Minneapolis.

[6] —-----—-- , Goldberg, Adele (editofs), and the Learning Research Group, Dynamic Personal
Media. (in press June 1975), Xerox Palo Alto Research Center.

[7] Goldberg, Adele, Smalitalk and kids --commentaries. PARC-LRG-3, June 1874, Xerox Palo
Alto Research Center.

[8] --=------ , Classroom communication media, ACM SIGCUE TOPICS in Instructional Computing,
Vol 1, Teacher Education, Jan. 1975, (with Bonnie Tenenbaum).

[9] Feurzeig, W., et. al., Programming-Languages as a conceptual framework for teaching
mathematics. Final report on BBN Logo Project, June 30, 1971.

[10] Papert, S., Teaching children thinking, IFIP Conference on Computer Education, 1970,
Amsterdam: North Holland.

{11] Papert, S., Teach children to be mathematicians versus teaching about mathematics, Inter.
Jeur. Math. Educ. Sci. Tech., Vol 3, 249-262, 1972,

[12] Sutherland, Ivan, SKETCHPAD: a man-machine graphical communication system, MIT
Lincoln Laboratory TR 296, May 1965.

[13] Dahl, O-J, et.al.,, SIMULA, an algol based simulation language, CACM, IX, 9, Sept. 1966.
[14] ======--- , SIMULA--common base language, Norwegian Computing Center, Oslo, Norway,
[15] Shaw, C., JOSS: a designer's view of an experimental on-line computing system, AFIPS
Conference Proceedings, XXVI, 1, Fall, 1964.

[16] Barton, R. S., A new approach to the functional design of a digital computer. Proc. WJCC,
1961.

[17] Fisher, D. A., Control structures for programming languages, Ph.D. Thesis,
Carnegie-Mellon University, Pittsburg, 1970,

{1877 McCarthy, J., et, al., LISP 1.5 Programmer's Manual, Cambridge: MIT Press, 1962.

[19] Chowning, J., The synthesis of comples audio spectra by means of frequency modulation.
J. Audio Eng. Soc. 21, pp 526-534, 1973

{20] Saunders, S., Improved FM audio synthesis methods for real-time digital music generation.
ACM Comp. Sci. Conference, 1975, Washington, D.C.

[21] Balzer, R., Automatic Programming. USC/ISI, RR-73-1

mprove

